
Corrections of sections 3.1 and 3.2 of “Brief introduction to Basic Structures of 
Matther theory and derived atomic models”[1]. They should be replaced by sections 6 
and 7 respectively from the article “A Physical Model of the Electron According to the 
Basic Structures of Matter Hypothesis (accepted in Physics essays v. 16, No. 2, 2003) [2]. 
The sections 6 and 7 are given below. 

 

6.Quantum motion of the electron in a closed loop trajectory. (This paragraph 
includes  

The orbital motion of the electron in atoms could be regarded as a motion in a closed 
loop, whose trajectory follows the equipotential surface of an electrical field defined by 
one or more positive charges.  

Let considering a repetitive motion in a closed loop. The modulation properties of 
the internal RL(T) lattice in a repetitive motion may cause distortion of the MQs (that is a 
normal state of the SPM vector) converting them into EQs. This will affect the orbital 
conditions defined by the proximity field of the proton. Let assuming that the orbital 
motion of the oscillating electron tends to adjust itself to this change by exchanging some 
reactive energy with the CL space, that is hidden for the external observer. Then we may 
analyse the phase repetitions of the two proper frequencies of the electron and the 
conditions of their match to the phase of the SPM frequency of the CL nodes. In such 
way we may assume that the stability of a repetitive motion in such loop will depend on 
the phase repetition for both, the first and the second proper frequencies of the electron.  

We will try to find the smallest path length at which the quantum loop conditions 
for an electron moving with a velocity corresponding to  (13.6 eV) is fulfilled. 
Initially we will ignore the relativistic effect for simplicity. It is reasonable to look for 
a path length defined by some CL space parameter. One such parameter is the Compton 
wavelength , related to the Compton frequency   by the simple expression 

1n =

cλ cν

c cλ ν= c . For one orbital cycle in a closed loop with length λ , the number of turns 
(electron structure rotations), N

c

T, is: 
  137.03235T c eN sλ= =                                                                                     (16) 
  The value of NT could be regarded as a condition for a phase repetition for two 

consecutive passages through a chosen point in the loop, keeping in mind a confined 
(screw-like motion) of the electron. The trace length of  (m), however, 
is quite small, when comparing to the Bohr orbit length of  (m).  
Therefore, we may look for a phase repetition conditions at larger loop length. From Eq. 
(16) we see that N
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T is close to 1  and this seams not occasional. Then, we 
may substitute N

137.036α =

T in Eq. (16) by 1 and multiply the result by . The latter is a CL 
space parameter from one side (a length of SPM phase propagation for one SPM cycle) 
and from the other - the circumference length of the electron structure. In such case we 
obtain: 
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(17) 



We see that the obtained value of Eq. (17) having a dimension of length is equal to 
the Bohr orbit length given by CODATA 98 (see Table 2) up to the 9th significant digit. 

        (m)        CODATA 98                               
(18) 
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where:  a   (m)  - is the radius of the Bohr atomic model of 
hydrogen.  

10
0 0.5291772083 10−= ×

The expression (17) is not something new. The important, fact, however, is the way 
of its derivation related with the suggested physical model of the electron. The obtained 
loop length appears equal to the orbit length of the Bohr atom, defined by Bohr atomic 
radius, ao. The latter is one of the basic parameters used in Quantum mechanics. From the 
BSM point of view, however, the physical meaning of this parameter appears different. 

According to BSM concept, the well known parameter a0 used as a radius in 
the Bohr model, appears defined only by the quantum motion conditions of the 
electron moving in a closed loop with an optimal confined velocity corresponding to 
an electron energy of 13.6 eV. Then the main characteristic parameter of the 
quantum loop is not its shape, but its length. 

The identity of Eq. (17) and (18) also indicates that the signature of the fine 
structure constant is embedded in the quantum loop. 

Now we may use the new obtained meaning about the quantum loop associated 
with the Bohr orbit, and more specifically the orbital length . For a motion with an 
optimal confined velocity, the number of electron turns in the quantum orbit is equal to 
the orbital length divided by the helix step (s
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Let find at what number of complete orbital cycles (for orbit length of 2 ) the 
phase repetition of the first and second proper frequencies of the electron is satisfied (in 
other words the smallest number of orbital cycles containing whole number of two 
frequency cycles). The analysis of the confined motion of the electron in Chapter 3 and 4 
of BSM indicates that its secondary proper frequency is three times higher than the first 
one (the first one is equal to the Compton frequency). Equation (19) shows that the 
residual number of first proper frequency cycles is close to 1/3. If assuming that it is 
exactly 1/3 (due to a not very accurate determination of the involved physical pa-
rameters), then the condition for phase repetition of both frequency cycles will be met for 
three orbital cycles. The whole number of turns then should be 
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 by its expression given by Eq. (7) we get  es
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We have ignored so far the relativistic correction, but for accurate estimation it 
should be taken into account. The relativistic gamma factor for the electron velocity of 

 is axV cα= 2 1 2(1 )α −= −γ . Multiplying the above expression by the obtained gamma 
factor we get. 

 23 int egerα =                                                                                                         
(21)  



The validity of Eq. (20) and (21) could be tested by the following simple procedure: 
calculating these expressions by using the best experimental value of α , rounding the re-
sult to the closer integer (satisfying the condition for two consecutive phase repetitions) 
and recalculating the corresponding value of α . The rounded integer (a whole number of 
turns) could be correct only if the recalculated value is in the range of the accuracy of the 
experimentally determined α . Let using the recommended value of experimentally 
measured α  according to CODATA 98. 

 α                             (CODATA 98)37.297352533(27) 10−= × 16                               
(22) 
where, the uncertainty error is denoted by the digits in the brackets.  

The calculated values of α  from Eq. (20) and (21) exceeds quite a bit the 
uncertainty value of experimentally determined α  given by Eq. (22). Consequently, the 
condition for phase repetitions of the two proper frequencies is not fulfilled for three or-
bital cycles with total trace length of 3 2 . Therefore, we may search for the next 
smallest number of orbital cycles in which the phase repetition conditions are satisfied. It 
stands to reason that the approximate value of the orbital cycles could be about 137 
(

0aπ×

1 ). Then if not considering relativistic correction, the corresponding number of 
electron turns is 
α

2(1 )α α− 3 . When applying a relativistic correction (multiplying by the 
estimated above gamma factor for the kinetic energy of 13.6 eV) the number of the 
electron turns becomes 3α1 . The phase repetition conditions will be satisfied if this 
number is integer: 3α =1 i                                                                                                                          nt eger

Substituting  α  by its value from CODATA 98 (Eq. (22)) we get 
31 2573380.57α =  

It is interesting to mention, that the closest integer value of 2573380 is obtained by 
Michael Wales, using a completely different method for analysis of the electron 
behaviour (See Michael Wales book “Quantum theory; Alternative perspectives”)17.  

We may use one additional consideration, for validation the above obtained 
number. The number of turnes multiplied by the time for one turn (the Compton time) 
will give the total time on the orbit (or the lifetime of the excited state, according to the 
Quantum Mechanics terminology). If accepting that the total number of turns are 
2573380 then we obtain a lifetime of 2.0827x10-14 (s), that appears to be at least two 
order smaller than the estimated lifetime for some excited states of the atomic hydrogen. 

Following the above analysis we may check for phase repetition at 4α1  turns. The 
participation of α  at power of four is in agreement also with the following consideration: 
In the analysis of the vibrational mode of the molecular hydrogen, an excellent match 
between the developed model and observed spectra (section 9.7.5 in Chapter 9 of BSM) 
is obtained if the fine structure constant participates at a power of four. In such case we 
may accept that the phase repetition conditions is satisfied for a number of turns given by 
the closest integer in Eq. (23). 

41 int egerα =                                                                                                          
(23) 



Using the CODATA value of α  we obtain 4 352645779.39α =1 .  Rounding to the 
closest integer we obtain an expression for the theoretical value of α  (if its experimental 
estimation is accurate enough). 

 1 4 3(352645779) 7.2973525298 10−= =α                                                              
(24) 
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The small difference of the theoretically obtained value of α  from the experimental 
one could be caused by an experimental error. One of the methods for accurate 
experimental estimation of α  is based on the measurement of the Josephson constant, KJ. 
Its connection to α  is given by the expression 
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(25) 
where:  - is the permeability of vacuum, m0µ

cλ
e - is the electron mass, c - is the light 

velocity,  - is the Compton wavelength. 
The accuracy of α  according to this method depends mostly on the accuracy of the 

Josephson constant measurement, because all other parameters are accurately known. The 
recommended value for this constant according to CODATA 98 is  

  (Hz/V). If replacing α  in Eq. (25) with the value given by 
Eq. (22) we will obtain the value of K

9483597.898(19)JK = 10
J that is in the uncertainty range given by the 

CODATA 98. 
The conclusion that the orbital time duration may depends only on α  is reinforced 

also by the consideration that the Compton wavelength, , was initially involved in the 
analysis (Eq. (15), (17), (19)), but it disappeared in the derived Eq. (23). Consequently, 
the phase repetition condition is satisfied not only for the two proper frequencies of the 
electron, but also for the SPM frequency of the CL nodes included in the quantum orbit 
(  is the propagated with a speed of light phase of the SPM vector for one SPM cycle of 
the CL node (SPM frequency = Compton frequency)).  

cλ

cλ

 

7. Quantum orbits.  
It is apparent from the provided analysis that a stable quantum loop is defined by the 
repeatable motion of oscillating electron. The shape of such loop, however, is determined 
by external conditions. Such conditions may exist in the following two cases:  

- a quantum loop obtained between particle with equal but opposite charges and 
same mass, as in the case of  positronium (see Chapter 3 of BSM) 

- a quantum loop obtained between opposite charged particles but with different 
masses (a hydrogen atom as a most simple case and other atoms and ions as more  
complex cases).  

In both options the quantum loops are repeatable and we may call them quantum 
orbits. A single quantum orbit could contain one or few serially connected quantum 
loops (in both cases the condition for phases repetition is preserved). It is obvious that the 
shape of the quantum orbit is defined by the proximity field configuration of the proton 
(or protons). The vacuum space concept of BSM allows unveiling not only the electron 



structure but also the physical shape of the proton with its proximity electrical field 
(chapters 6 and 7 of BSM). The shape of any possible quantum orbit is strictly defined by 
the geometrical parameters of the proton. 

Let considering now the induced magnetic field of the electron motion in a quantum 
orbit by using the elecron magnetic radius. The magnetic radius of the electron moving 
with different subharmonic numbers  n is analysed in section 3.1, Chapter 3 of BSM. Its 
value for  (a kinetic energy of 13.6 eV) matches the estimated magnetic radius 
corresponding to the magnetic moment of the electron. For larger numbers (decreased 
electron energy), however, the magnetic radius shows an increase.  The physical 
explanation by BSM is that at decreased rate of the electron rotation its IG field of the 
twisted internal RL structure is able to modulate the surrounding CL space up to a larger 
radius until the rotating modulation of the circumference reaches the speed of light. 
Keeping in mind that the circumference of the electron is equal to the Compton 
wavelength (with a first order approximation) the circumference length of the boundary 
(defined by the rotation rate) should be a whole number of Compton wavelengths. Then 
the integer number of the Compton wavelengths corresponds to integer subharmonic 
number. In such case, the orbiting electron with optimal or sub-optimal velocity could not 
cause external magnetic field beyond some distance from the nucleus. This provides 
boundary conditions for the atoms, if accepting that in any quantum orbit the electron is 
moving with optimal or sub-optimal confined velocity (integer sub-harmonic number). 
Here we must open a bracket that the higher energy levels in heavier elements come not 
from a larger electron velocity but from the shrunk CL space affected by the accumulated 
protons and neutrons. Such CL space domain is pumped to larger energy levels in 
comparison to the CL space surrounding the hydrogen atom. 

1n =

The existence of the IG law changes significantly the picture of the orbiting electron 
in a proximity field of the proton. In Chapter 7 of BSM an analysis of Balmer model of 
Hydrogen atom is developed based on the BSM concept of the electron and proton and 
the IG law influence on the orbital electron motion in the proximity to the proton. It 
appears that the limiting orbit has a length of 2  while all other quantum orbits are 
inferior. This conclusion is valid not only for the Balmer series in Hydrogen but also for 
all possible quantum orbits in different atoms, if they are able to provide line spectra. 
Therefore, the obtained physical model of Hydrogen puts a light for solving the 
boundary conditions problem of the electron orbits in the atoms. 

0aπ

8. Time duration for a stable orbit (lifetime of excited state). 
The following analysis could be valid only for the hydrogen, where the influence of the 
proton mass on the surrounding CL space appears to be negligible.   

Keeping in mind the screw-like confined motion, the axial and tangential velocities 
will be inverse proportional to the subharmonic number. Then the condition for phase 
repetitions for a motion with a subharmonic number n will be satisfied for n times smaller 
number of electron turns, or the quantum orbit will be n times smaller. It is reasonable to 
consider that the first and second proper frequencies of the electron are stable and not 
dependant on the subharmonic numbers. Then for estimation of the time duration of the 
orbit (the lifetime of excited state) it is more convenient to use the number of the cycles 
of the first proper frequency of the electron. It is equal to the number of electron turns for 

.  In such way we arrive to the conclusion: 1n =



(a) If conditions for stable quantum orbit are defined only by the phase 
repetition conditions and the whole number of Compton wavelengths, the time 
duration (lifetime) of the orbiting electron does not depend on the subharmonic 
number of its motion. 

(b) If (a) is valid, the lifetime of the excited state will be equal to the product of 
the total number of the first proper frequency electron cycles (according to Eq. (23)) 
and the Compton time (the time for one electron cycle with the first proper 
frequency)  

 According to condition (b) the theoretical lifetime for an excited state of hydrogen 
is 

4 4( ) 2.85407 10c ct cτ α λ α −= = = × 12  (s)                                                       (26) 
where:  - is the Compton time. ct
 Note: The obtained Eq. (26) does not take into account the possible 
modification of the surrounding space in a close proximity to the proton. Such 
modification (a slight shrinkage, or a space curvature) may cause aliasing for the 
phase repetition conditions due to affected SPM frequency and Compton 
wavelength, while the first and second proper frequencies of the electron are 
obviously stable. For heavier atoms such modification may appear much stronger. 
For elements with more than one electron the mutual orbital interactions also may 
lead to increase of the real lifetime. 
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