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CL node return forces and oscillations

Note: Figures and equations shown in Chapter 2
are shown here by the same number put in square
bracket [...].

1. Node configuration of CL structure
Fig. [2.20] illustrates a geometry of a single

node in a position of geometrical equilibrium and
the axes of symmetry. 

Fig. [2.20] CL node in geometrical equilibrium posi-
tion The two sets of axes of symmetry are: abcd and xyz

The four prisms of the node are shown by
thick lines. The point where they are connected (by
attracting SG forces)  is the CL node origin. The
prisms are aligned along a, b, c, d axes intercepted
at point O. The free ends ABCD of the prisms form
a tetrahedron ABCD if the angle between each one
of abcd axes is 109.5o.  This state of the CL node is
called a geometrical equilibrium. Then abcd axes
are regarded as axes of symmetry. However, the
CL node has also another three axes of symmetry
x, y, z, which passes through the middle of tetrahe-
dron edges. This axes xyz are orthogonal each oth-
er. In a geometrical equilibrium the xyz axes
intercept the axes of abcd at angle of 54.75o  (half
of 109.5o). In CL structure every single node is
connected to 4 neighbouring nodes of another in-
trinsic matter, which prisms have opposite handed-
ness. In geometrical equilibrium, both set of axes
(abcd and xyz) between neighbouring nodes coin-

cide. the abcd axes coincide even in non equilibri-
um position. In not geometrical equilibrium 

2. Node displacement along anyone of abcd axes
The return forces acting on displacement in

two opposite directions along anyone of abcd axes
are not symmetrical. For this reason expressions
for the return forces are derived separately for left
and right displacements (denoted also as (-) and (+)
displacements in respect to the point of geometrical
equilibrium.

2.2 Displacement in a negative direction (left 
side displacement)

 

            Fig. 1.  Displacement along one of abcd axes. Dis-

placement in minus x direction is shown as a left side dis-

placement. The black thick lines are the position of the prisms

prisms at geometrical equilibrium of the CL node, while the

gray thick lines show the prisms at displaced positions

Notations:
O - geometrical equilibrium point

 - angle between prisms in point O
 - angle between prisms at displaced position

d - is a node distance along anyone of abcd axes at
equilibrium position
x - displacement from point O along anyone of
abcd axes.
d1 - changed node distance at displaced position

Applying the law of cosines we get:

      (1)

                                          (2)

Using Eqs (1) and (2) and solving for :
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                   (3)

The inverse cubic Super Gravitational force
is  

                                                         (4)

where:  - an intrinsic Gravitational Con-
stant between the nodes of different type. It is un-
known, however, it will be eliminated in the final
expression; m - intrinsic mass of the node, r - dis-
tance

The hypothetical origin of SG field is dis-
cussed in Chapter 12. It leads to the consideration
that the sign of SG field between the opposite types
of CL nodes in CL structure may change the sign.
Let analyse the return forces only at attraction SG
forces between neighbouring nodes (of opposite in-
trinsic matter). For attracting SG field, the force be-
tween the node and its right side neighbour is

                                             (5)

The resultant force from other three attracting
forces from the other neighbouring nodes along the
axes of abcd set pull in opposite direction. Anyone
of these three forces acts upon an angle of  in
respect to the axis a-a. Therefore the three contri-
butions are obtainable by multiplying the attractive
forces by a cosine of . Then the resultant
force FL from the three neighbouring nodes is ex-
pressed by:

             (6) 

The return force for displacement in (-) direc-
tion F(-) is a difference between FR and FL forces:

            (7)

Substituting d1 from Eq. (1) and  (given
by Eq. (3)) in Eq. (7) and normalizing to the prod-
uct  one obtains an expression of the normal-
ized return force acting on the node for
displacement in (-) direction in respect to geomet-
rical equilibrium.

          (8)

Having in mind that the analysed displace-
ment could be along anyone of axes abcd, the Eq.
(8) appears to be valid for anyone of these axes. Be-
cause the node distance parameter is unknown, it is
more convenient to normalize the deviation to d. In
such case we may substitute  and consider
that x is in fact x/d parameter. Then theoretically

 but practically its upper limit is lower. Eq.Eq.
(8) simplifies to Eq. (9) possessing only one argu-
ment.

          (9)

2.3 Displacement in positive direction (right 
side displacement)

Figure 2 shows displacement in right hand
(+) direction along anyone of abcd axes.

Fig. 2. Displacement in right hand (+) direction. The
black thick lines show the prisms of the CL node at geomet-
rical equilibrium. The thick grey lines shows the prisms of the
CL node in displaced position 

Applying the law of cosines we get:

                                        (10)

    (11)

Solving Eq. (9) and (10) for  we get

                 (12)

The SG force pulling in right direction along
axis a is
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                                             (13)

The resultant force from the three attracting
forces of other neighbouring nodes along the axes
of abcd pulls in an opposite direction. Anyone of
these three forces acts upon an angle of  in re-
spect to the axis a-a. Therefore the three contribu-
tions are obtainable by multiplying the attractive
forces by a cosine of . Then the resultant
force FL from the three neighbouring nodes is ex-
pressed by the same Eqs (6).

Substituting d1 from Eq. (10) and  from
Eq. (12) in Eq. (6) we obtain an expression of the
return force acting on the node for displacement in
(+) direction in respect to geometrical equilibrium.

                    (14)

The return force for displacement in (+) di-
rection F(+) is a difference between FR and FL
forces. Dividing by the unknown factor  we
obtain the normalized value of this force. Addition-
ally substituting , we may consider x as nor-
malized parameter on d. Then the return force for
displacement in a positive direction is:

            (14)

2.4. Plotting the return forces for negative and 
positive displacement

Note: We must keep in mind that in both cas-
es (positive and negative displacement) we consid-
ered x as a positive parameter theoretically
restricted in a range . (In a real case the de-
viations are in much smaller range (this is evident
in the dynamic oscillation analysis of CL node in
Chapter 2 and 4)). Therefore Eq. (8) and (14) are
defined only for positive values of x. So, when plot-
ting the forces as function of x we must consider
that:

- for the deviations in a positive direction, x
increases from left to right

- for deviations in a negative direction, x in-
creases from right to left.

 Figure [(2.23)] shows the plot of the return
force in a relative scale along anyone of abcd axes

as a function of displacement x, normalized to the
internode distance.

Fig. [2.23] Return force of normalized force in func-
tion of displacement normalised to the internode distance

Conclusion: 
• Under inverse cubic law of gravitation, the 

return force for a positive and negative devi-
ation along anyone of abcd axes is not sym-
metrical

3. Node displacement along anyone of xyz axes.

               Fig. 3. Displacement of CL node along one of xyz

axes (x axis is shown) The projections of the two prisms in the

left down corner of the figure coincide. If the structure is ro-

tated at 90 deg around the x axis the projection of the upper

two prisms will coincide.

Following a similar approach and applying
the Pitagor theorem and cosine laws leads to deri-
vation of the expression along anyone of xyz axes.

                                                             [(2.14)]

The plot of Eq. [(2.14)] for positive and neg-
ative displacement is shown in Fig. [(2.21)].
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 Fig. [2.21] Return force for displacement along
 anyone of xyz axes 

The return forces plot is symmetrical and
have two valleys along anyone of xyz axes, posi-
tioned symmetrically in respect to the point of geo-
metrical equilibrium 0. 

4. Complex oscillations due to different return 
forces along both sets of axes: abcd and xyz.

It is not difficult to imagine what kind of os-
cillations the CL node will have. The symmetrical
return forces along xyz will contribute to a close to
a planar type motion cycle with four bumps and
four dimples. The trajectory of such cycle, howev-
er, will be not a closed, since the influence of the
return forces along abcd axes, so we may call it a
quasicycle. The asymmetrical return forces along
abcd axes will cause continuous rotation of the
quasicycle mentioned above until a closed trajecto-
ry is obtained. The multiple trajectories of the qua-
sicycle will circumscribe a 3-D surface with 6
bumps, aligned with the xys axes and 4 dimples
aligned with abcd axes. This is further discussed in
Chapter 2, §2.9.2.

The complex oscillation could be regarded as
consecutive displacements in any angle in  in
which the displacement along abcd and xyz axes
are only particular cases. If for one particular dis-
placement we integrate the expression of the return
force on displacement in a range from the lowest
point to the point of geometrical equilibrium we
will obtain expression of energy well valid for dis-
placement along the chosen axis. Following this
approach the total energy well could be estimated.
as a average integral from all possible directions in

 range.
Note: This type of oscillations provide AC

type of Zero Point Energy of CL space that is relat-

ed to Electrical and Magnetic fields. (AC is as al-
ternative current in electrodynamics). The CL grid
contains a DC type of energy well, that is much
larger (DC is as direct current in electrodynamics).
It could appear only if we imagine that we force to
separate CL nodes. For analogy the surface waves
of the ocean could be regarded as AC type energy,
while the gravitation from the water column as DC
type of energy.
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