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 The parameter k is determined from the SG
forces between the primary balls in the primary tet-
rahedron. For the primary quasipentagon it will be
approximately the same, because these two struc-
tures have very close intrinsic matter density. Let
us assume that the parameter k does not depend on
the type and order of the formation. This assump-
tion is based on the consideration that the structure
of the primary QP is preserved in all higher order
structures. The matter quantity expressed by the in-
trinsic mass, however, is dependable on the struc-
ture type and order.

Let us determine the frequency of the com-
mon vibrational mode for a QP of some upper con-
gregational order p. All lower order structures
included in this QP preserve their configuration. So
the same parameter k between primary balls should
be valid (according to the above made assumption),
while the mass of the QP of order p could be esti-
mated by the matter quantity given by Table 12.0.

Having in mind Eqs, (12.5) and (12.6) the
common mode frequency of the QP of p-th congre-
gational order could be expressed as:

                  (12.7)

We see, that the common mode frequency
falls pretty fast with the order number p. Having in
mind the quantum features described by the SG-
SPM quasisphere, the obtained common mode fre-
quency might be considered as a proper frequency
of the SGSPM vector.

Making a ratio between  and  we get:

                                   12.8)

The mass of the primary PQ is five times the
mass of primary TH, but the mass to volume ratio
(neglecting the small gaps between TH in the QB
structure) is approximately the same. Then param-
eter k for TH and QP is also the same and the ex-
pression of the frequency ratio between IGSRM
vectors of the primary TH and the SGSPM of high-
est order QP in the prism will become:

                                       (12.9)

Note (1): The factor of 5 refers to the QP’s
SGSPM, that is a common mode of IGSRM of the
included TH’s. The real factor might be slightly
lower than 5 due to the angular gap in the QP. So
SGSPM of TH is approximately equal to 5 times
SGSPM of QP (within the same congregational or-
der).

According to the considerations in
12.A.4.4, the Planck’s time regarded as a period
of IGSRM vector, may correspond to  or

, while  could be the SGSPM frequency of
the quasipentagons from which the prisms are
made.

Let us analyse how the SGRM period
changes during the growing process: tetrahedron -
quasipentagon - quasiball - upper level tetrahedron.

The SGRM is defined for the primary TH.
The period of SGRM may be slightly decreased in
the primary quasipentagon, due to the close accu-
mulation of intrinsic mass and obtaining a different
shape of SGSPM quasisphere. In a growing proc-
ess from a QP to a QB within one congregational
order the period of SGRM should not be signifi-
cantly affected, because QPs are connected by
small volume sections. In the growing process be-
tween a QB and a upper order TH the SGRM peri-
od could not be affected significantly because the
mean matter density, , is approximately the
same as of QB. The change of SGRM period in the
upper order growing will be smaller and smaller,
following a continuously decreasing step function
with progressively smaller steps. Consequently:

(a) The change of SGRM of the growing
structures is a decreasing steplike function with
progressively decreasing steps.

(b) The step change have two periodical
progressions: 

- between congregational orders
- between different type of structures of

same order

12.A.5.3. Hypothesis of embedded fine struc-
ture constant in the lower level structures of 
matter organization

Considerations related to the concept of embed-
ded fine structure constant 

From the previous chapters it was shown that
the fine structure constant is embedded not only in
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the electron structure but also in its dynamical
properties in CL space and many other interactions
between the elementary particles and the CL space
(for instance: in the quantum motion of the electron
(positron); in the quantum orbits conditions for at-
oms and molecules; in the atomic and molecular
spectra). In Chapter 10 of BSM it was shown that

 is also involved in the inertial interactions be-
tween the elementary particles and the CL space
(Eqs (10.36), (10.39), (10.39a). It was even found
that the signature of  is involved in the inertial in-
teraction balance of the solar system in our home
galaxy - the Milky way (see §10.6.4, Chapter 10 of
BSM).

 From the analysis of the lower level of matter
organization and the concept of the galactic cycle
(provided later), it becomes apparent that  is a
common fundamental physical parameter for all
observable galaxies. Consequently,  is a parame-
ter of very low level structure and its signature is
preserved even in the galactic recycling process
(discussed later in this chapter). The basic repeata-
ble structure which possesses SGSPM vector is the
primary tetrahedron, so it is reasonable to look for
a possible signature of  in this structure. One very
basic physical parameter of the primary tetrahe-
dron is the number of primary balls. Keeping in
mind that all the shells of the tetrahedron should be
completed, a simple rule follows that a strong rela-
tion must exist between the number of balls along
the edge and the total number of balls. For exam-
ple, if the edge number of balls, Nedge, corresponds
to the set: 10, 11, 12, 13, 14, 15, 16, 17, 19 and so
on, then the total number of balls, Ntot, should be
respectively: 220, 286, 364, 455, 560, 680, 816,
969, 1140, 1330 and so on.

The experimental value of the fine structure
constant is measured with very high accuracy.
Finding a theoretical derivation of this fundamen-
tal parameter, however, have been one of the most
difficult problems in mathematical physics. (see J.

G. Gilson)1. In fact number of empirical formulae
have been suggested, but without understanding
what kind of physical mechanism is behind them.
One of these formulae (shown as Eq. (F1)) gives a
value, which is very close to the measured one rec-
ommended by CODATA 98 (if the two involved

integer parameters have value:  and

):

                                                                             (12.12)

  (CODATA 98)    

Recently another simple expression has been

proposed by I. Gorelik2, as a system of two simple
equations:

I. Gorelik, mentions the derived method but
does not provide any association with a possible
physical mechanism. The BSM analysis found an
excellent association with the oscillating proper-
ties of the lower level structures described by
SGSPM vector.

The common mode oscillations of the pri-
mary balls embedded in the primary tetrahedron
could be described by two vectors: SGRM and
SGSPM (see §12.A.4.2.1 C). Making analogy
with the CL node dynamics, the primary tetrahe-
dron has the same two set of axes: abcd (non-
orthogonal) and xyz (orthogonal). Then to analyze
the dynamics of oscillations of the primary tetra-
hedron, we may use a concept similar as the CL
node dynamics (presented in “Brief intro to
BSM...” and Chapter 2 of BSM), but instead of
NRM we have SGRM and instead of SPM we
have SGSPM. One major difference is that the pri-
mary tetrahedron has relatively large intrinsic mat-
ter density for the volume it encloses, while the
CL node has much smaller intrinsic matter density
for the volume it encloses. For this reason we must
expect much smaller number of SGRM cycles in
one SGSPM cycle in comparison to the CL node
dynamics (NRM cycles in one SPM cycles). Due
to the two sets of axis, the trace of SGRM will not
be circular and will note lie in a plane. We may
simplify the analysis if replacing the real trace of
SGRM with an equivalent elliptical trace having a
dipole moment equal to the real precession
moment of SGRM vector for one cycle.
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Figure 12.8 illustrates the dynamical behav-
ior of the SGRM vector.

Fig. 12.8. Spatially precessing dipole momentum
                    expressed by SGRM vector.

The origin of the SGRM vector is always fixed at
the origin O of a coordinate system xyz, while hav-
ing a freedom to rotate in the spherical space vol-
ume. Due to the different stiffness along the two
sets of axes xyz and abcd (not shown in this fig-
ure), the vector SGRM will perform a helical rota-
tional motion with a very small but constant
helical step. This means that after one cycle its tip
will not pass through the same point but through a
point closer to the previous one, so the distance
between them is much smaller than the trace of the
vector's tip. We may call this a quasicycle. After
many quasicycles, however, the tip of the SPM
vector will pass exactly through the same initial
point (arbitrary selected). This cycle we may call a
full cycle. Then the full cycle will contain many
quasicycles, but their number may not be an inte-
ger. In this kind of motion, the tip of the SGRM
vector will circumscribe a trace, which lies in a
spherical surface. It is apparent that for one quasi-
cycle, the trace of the vector SGRM will not lie in
a plane, but we may consider an equivalent plane,
defined by the condition that the average distances
between the points of the vector's tip (through
equal time intervals) and this plane is a zero. This
will simplify the analysis and will allow us to
define the following parameters:

 -selection of an initial reference point
-definition of a dipole momentum in a plane 
-definition of the step between two neighbor-

ing equivalent planes (corresponding to the helical
step of the SGRM vector) as an angle between
them.

It is apparent that the dipole momentum of
SGRM vector could be expressed by an ellipse
lying in the equivalent plane. We may call it a
“dipole ellipse”. The rotational axis OO` will be
perpendicular to the major semiaxis r of the dipole
ellipse, but not perpendicular to the minor semi-
axis. In other words the plane of the dipole ellipse
will be rotating with a small pitch angle   of

 defined by the helical motion of the
SGRM vector. Then for one quasicycle, the dipole
ellipse will sweep a volume of an oblate spheroid
with a major semiaxis r and a minor semiaxis
defined by the product: .

In every quasicycle, the dipole ellipse will
sweep the same volume, while the initial angle 
(arbitrary selected) will change with one and a
same step. This angle is shown for reference only.
It could be defined for any one of the orthogonal
axes. The rate of  change will define the number
of completed quasicycles within one full cycle.
The latter, however, may not contain an exact
number of quasicycles but a whole number plus a
fraction, so we have: 

Full cycle = n + k
Where: n - is the number of completed

quasicycles contained in one full cycle, k - is a
fraction of a quasicycle

Our goal is to express the fraction parameter
(k) as a function of the whole number (n) using the
defined model. We will derive expression using
the relation between the volume of the circum-
scribed sphere and the volume of the oblate spher-
oid.

The volume of the circumscribed sphere is:

If the full cycle contains a large number of
quasicycles, then: . We may associate this
with the fractional part of , so we may write:

 . Then, the volume of the oblate spheroid

is:   
The tip of the SPM vector is associated with

the point of interception of the dipole ellipse with
the major semiaxis. This means that for a full
cycle of the SGRM vector, the volume of the
oblate spheroid swept by the rotating dipole ellipse
will be twice the volume of the circumscribed
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sphere, or we have . The expression

corresponding to this is: 

                                                   
Multiplying both sides by 1/r and using a

normalized parameter  , we arrive to:
                                   (12.13)

Now we may look for a possible reasonable
value of the product , while trying to relate the
parameter sr to π. Knowing that (n+k) is equal to

, we should have . For this purpose we
will use the experimental value of alpha given by
CODATA 98. Then the normalized minor semiaxis
of the oblate spheroid should be close to the value:

 . This value is very close to:

. The difference between them

is only 0.59%, so we may accept:

 or                            (12.13.a)
The idea to relate the parameter sr to π is rea-

sonable if examining the more accurate formula
(12.12), where π participates. It complies also with

the Feynman's idea1 that alpha should be some-
how connected to the numbers e or π.
Substituting (12.13) in (12.13.a) leads to Eq.
(12.13.b). It is a quadratic equation. The root lead-
ing to a correct expression for alpha is:

                   (12.13.b)
Using the module of the solution (10) and combin-
ing with the expression  we get the
explicit theoretical expression for the fine struc-
ture constant (denoted as )

   (12.14)

Conclusion: In the obtained equation for theoreti-
cal value of the fine structure constant only one
number must be selected: n.

Equation (12.14) provides a pretty accurate
value for alpha, if the accuracy of its experimental
value exceeds some level. This requirement is
overly satisfied that is evident from the plot illus-
trated by Fig. 12.9, according to which we can use 

n = 137 with a high level of confidence.

Fig. 12.9. Plot of the fine structure constant, by the theoreti-
cal Eq. (11) (blue line) and by CODATA 98 value (red
dashed line). The experimental accuracy better than 0.7%
allows to use only n =137 for which a quite accurate value
for the fine structure constant is obtainable.

Discussion: 
The suggested method provides a simplified phys-
ical picture of the common oscillating mode in the
primary tetrahedron, whose signature is the fine
structure constant. Evidently, the fine structure
constant is defined by the intrinsic features of the
primary ball: an intrinsic time constant and a level
of deformation. These two parameter are constant
for primary balls of both types of intrinsic matter.
   
References:
1.J. G. Gilson, Fine structure constant, http://www.btinter-
net.com/~ugah174
2.I. Gorelik, Formula for fine structure constant, www.geoci-
ties.com/Area51/Nebula/3735/fine.html

12.A.6. Super Gravitational Constant

12.A.6.1. Difference between SG constants Gos 
and God.

The Super Gravitational constant Go has been
introduced and partially discussed in Chapter 2 of
BSM. Now keeping in mind the oscillation proper-
ties of the primary balls and TH, QP and QB forma-
tions of any congregational order it becomes
apparent that SG field could be defined by the in-
teraction energy EIG between two structures of a
same type placed in a void space at unit distance. It
is reasonable to chose a stable length parameter for
a unit distance. For this reason we must be able to
scale the chosen unit distance to the dimension of
the primary ball. This distance is preserved in all
upper order structures. Having in mind the robust-
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ness of the formations from intrinsic matter includ-
ing the prisms it is apparent that the prism length
could be also used as unite length. (When analysing
phenomena in CL space, however, we consider the
internode distance as an unite length keeping in
mind that it is only weakly dependable on the mass
of a large body (a General Relativity effect).

 From the presented in §12.A.4.2 and §12.A.5
scenario of the prisms formation it becomes appar-
ent that the prism is formed of aligned quasipenta-
gons of one and a same order (and from one type of
intrinsic matter substance). The analysis made for
the prisms should be valid for the structures of the
same congregational order. Because we have two
types of intrinsic matter substances, we must con-
sider two types of SG constants:

Gos - is the SG constant between structures of
intrinsic matter substance of same type

God - is the SG constant between intrinsic
matter substances of different type.

The volume ratio between the primary balls
from the two substances should be equal to the
prisms volume ratio . Then the radius
ratio of the primary balls is . Even with-
out knowing the common estimated mass density
and the force constant, it is evident that the SGRM
vectors of the primary tetrahedrons of both sub-
stances will have different periods (estimated by a
common time base). SGSPM vectors (for TH, QP
or QB) of both substances will have a period mul-
tiple of SGRM period (for the primary ball). 

Let us accept that a complete SG energy ex-
change between the spatially separated structures
(in a void space) is achieved for a finite time, de-
fined by the time constant of the intrinsic matter,

. While it is intrinsically small and could be near
the range of the Planck’s time, it is quite important.
As discussed in Chapter 2 of BSM, without such
constant the energy conservation could not be de-
fined, while all analysis and observations show that
this principle is an iron rule. 

Let us associate the intrinsic time constant,
, with the cycle of the SGSPM frequency. From

the analysis of the SGSPM frequency in §12.A.5.2
we found that it decreases as a step like function in
the growing process of lower level of matter organ-
ization. Consequently, the secondary time base will
be respectively an increasing step-like function.

Let us consider the two types of prisms which
play the role of basic elements of CL space. While
keeping in mind that the prism has anisotropic SG
field, let us focusing on its axial SG field. Since the
prisms are formed of aligned QPs, the combined
SGSPM of the QPs will define the SGSPM vector
of the prism.

Let us consider two cases of spatially separat-
ed prisms in a void space.

(1) Case: The prisms are of same intrinsic
matter and handedness

(2) Case: The prisms are of different intrinsic
matter and handedness

Then the interaction SG energy could be pre-
sented as integration of SGRM cycles for the time
duration of the SGSPM cycle.

The complex trace of the SGRM vector for a
full SGSPM cycle is difficult to be expressed math-
ematically. We may simplify the problem, by re-
placing this two vectors with a simplified model of
linear interaction between two slightly different
frequencies and estimate the product of their inter-
action. Then the analysed problem could be regard-
ed as the energy transfer between two PLL (phase
looked loop) oscillators. The case (1) corresponds
to two PLL oscillators with equal proper frequen-
cies ( ). They need very short time interval in
order to get in synchronization and exchange ener-
gy. The case (2) corresponds to two PLL oscillators
with slightly different proper frequencies ( ).
They need a significantly larger time interval and at
different moments the biting effect could be con-
structive or destructive. The associated energy ex-
change for this simplified model is given by the
expression.

                   (12.15)

 - is the frequency ratio associated to
the ratio of SGRM frequencies of the two types of
prisms.

For case (1) we have , while for case (2)
this factor is .
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Figure 12.12 shows a plot of EIG for case (1)
- the black line ( ), and for case (2) at three val-
ues of a parameter: 0.6, 0.66 and 0.73. 

Fig. 12.12. Plot of ESG for different value of a parameter.

While for case (1) the interaction energy is al-
ways positive, for the case (2) the interaction ener-
gy for elapsed time of  (corresponding to
SGSPM) could be positive, zero or negative, de-
pending on the value of the parameter a. When
considering that the two prisms are part of a lat-
tice structure from the aspect of the energy con-
servation principles, the negative interaction
energy will cause an increase of the CL node dis-
tance until the total energy balance is restored.  

It is interesting to analyse the expression by
replacing the factor of  with  and integrate up
to . This may simulate better the SGRM, which
in fact rotates in  spatial angle. While it is still
not equal to the real model, it shows that the plot for

 drops to zero for some particular values of .
This leads to one important conclusion: In some
particular arrangement of the prisms, the SG attrac-
tion could be lost for a finite time. Evidently such
effect could appear only for extremely short time
interval, because the SGRM and SGSPM frequen-
cies of the prisms are slightly influenced from their
common positions and distances, especially in a
lattice configuration.

Despite the simplicity of the model, it allows
to make some important conclusions.
A. The attraction between the same type of
prisms is always stronger, but in some particu-
lar structural arrangement it may be decreased
significantly
B. In the CL structure where the prisms are
arranged alternatively in nodes, the node dis-
tance is supported automatically, due to the

slight dependence of the SGRM and SGSPM
frequency on the CL node distance. 
C. The influence of the interaction energy
allows deeper understanding the physical
meaning of the two SG constants, Gos and God

The conclusions A. and B.put a light on the
stability of the LC structure of the physical vac-
uum and the structural stability of the elementary
particles. The conclusion C. puts a light on the
non-mixability of the low level formations from
the two different substances. This is important fea-
ture in the phases of matter evolution during the
hidden phases of the galactic cycle.

Note: The evaluation of both SG constants is
only possible by the parameters of CL space, so the
asymmetrical factor asym should be taken into ac-
count when necessary (see §6.9.4.2 in Chapter 6 of
BSM, related to asym).

12.A.6.2. Intrinsic time constants of the prism.
The provided concept of SG energy exchange

between low level matter formations shows, that
the SGSPM cycle defines one important feature of
the prisms - their intrinsic time constant. 

When the concept of SG interaction was in-
troduced in Chapter 2 of BSM, it was emphasized,
that the intrinsic matter of the prisms should posses
intrinsic time constant. Only in such way a finite
time could be assign to any interaction process.
This is a very important requirement for assuring a
finite energy exchange in any kind of interactions,
or in other words complying to the energy conser-
vation principle. Having in mind the prism’s inter-
nal structure of aligned QPs, as shown in fig. 12.3,
we arrive to the following conclusion:

 The intrinsic time constant of the prism is
defined by the SGSPM period of the uppermost
quasipentagons, which are embedded in the in-
ternal prism’s structure.

It has been mentioned in the previous chap-
ters (and used in analysis) that the SG field of the
prism exhibits an axial anisotropy. The above de-
fined time constant is valid for the prism’s axis di-
rection. In a direction normal to the prism’s axis
another time constant might be important defining
the radial SG field of the prism. This time constant
may have a cirality feature, so it could be related to
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the period of SGSPM vector of the most upper or-
der quasiballs (possessing twisting that defines the
handedness) embedded in the QPs from which the
prism is built. Having in mind that the QP contains
a large number of lower order QBs the radial SG
field time constant might be much shorter than the
axial SG field one. In such case one important fea-
ture of the prisms could be explained: why the
prisms of CL nodes do not stack together. They
may stack only if the prisms are axial aligned and
closer below some critical distance. Such condition
may appear only in a very special environment
where a crystalization of helical structures from a
same type of prisms is possible. The scenario for
such process is described in §12.A.11.3.

Summary:
• - both types of prisms have own set of 

intrinsic time constants: one per axial direc-
tion and another one per radial direction

• - the prisms of CL nodes are not stacked 
due to the different value of their axial and 
radial intrinsic time constants

• - free prisms may stick along their long side 
if they are closer below some critical dis-
tance. (valid only in suitable environments 
for crystallization of helical structures from 
which the elementary particles are built.

12.A.6.3. About the possible equivalence 
between G and Go that could allow an estima-
tion of the intrinsic masses of some low level 
formations.

12.A.6.3.1. Considerations
In CL space the both SG constants could ap-

pear as one constant properly corrected by CL
space asymmetric factor. The Planck’s time (see
Eq. [(2.67)]) is defined by the gravitational con-
stant G which is valid for CL space. The analysis in
§12.A.5.3 shows that the embedded fine structure
constant could be directly related to the Planck’s
time. Then one may speculate that the Super grav-
itational constant G0 (expressed by CL space pa-
rameters) might be the same as the universal
gravitational constant G. At first glance, this con-
clusion may seem hypothetical because the SG

forces are quite much stronger than the Newton’s
gravitation. But when expressed by the equation of
the SG law these forces may appear large due to the
larger intrinsic masses (involved in the elementary
particles) and the inverse cubic dependence of the
forces on the distance.

If the above consideration is true, then the in-
trinsic masses of all structures from the lower level
of matter organization including the primary ball
could be found (if the parameters Ntot and p dis-
cussed in §12.A.5.3 are correctly determined).
Note: The intrinsic mass could be estimated only
by the units valid for CL space. In such aspect the
asymmetric factor should not be discussed here
with the presumption that it is valid when distin-
guishing the right-handed from the left-handed
prisms.

12.A.6.3.2. Equivalent intrinsic mass and mat-
ter density of the CL node

The two types of prisms are respectively from
two different intrinsic matter substances, but the in-
trinsic mass related to the SG law we may estimate
only in CL space using the Newton’s mass unit. For
this reason we call it an equivalent intrinsic mass.

The factor CSG has been accurately deter-
mined in Chapter 9 as:

               [(9.25)]

where:  - is the intrinsic mass involved in
the proton (neutron).

The similar factor for a Newtonian gravita-
tion is:

where: G -is the Newtonian gravitational
constant and mp - is the proton mass.

We must keep in mind that CSG is related to
the inverse cubic law, while CN - to an inverse
square law, so they have a different dimensions.
Then, the following analysis could be valid if the
assumption that  is correct, where

 is the unit length in the system SI, in
which both factors are compared.   Then we have:

                                   (12.15.a)

where:  is the Newtonian mass of the pro-
ton, Go - is the intrinsic gravitation,  - is the in-
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trinsic mass of the proton,  - is the CL node
inertial mass (CL node mass as a Newtonian mass),

 - is the intrinsic CL node mass expressed by
the Newtonian mass. 

The inertial node mass has been determined in
Chapter §2.11.3, Eqs (2.48) and (2.57): 

  (kg)

Solving Eq. (12.15.a) for the intrinsic mass of
the CL node, , we obtain the intrinsic mass of
the CL node:

            (12.16)

Now we may calculate the approximate value
of the CL node matter density. In $.211.3, Chapter
2 of BSM the CL internode distance was found to
be  (m). Let us accept that the as-
pect ratio (length to diameter) of this prism is ob-
tained initially by the first crush of the higher order
QB into QPs in a way that the QPs become axially
aligned and it is preserved in the further process of
moulding. Then we may obtain the approximate as-
pect ratio of the prism using the relative dimen-
sions of the QP shown in Fig. 12.2. One prism will
contains 12 QPs, so the obtain aspect ratio is 

 If assuming a gap of 1/3 of the internode dis-
tance we obtain:

prism diameter: 1.04 x 10-21 (m)
prism length:     5.616 x 10-21 (m)
prism volume:   4.45 x 10-63 (m3)
Keeping in mind that the CL node contains

four prisms, we get the CL node matter density. 

 (kg/m3)

Having in mind that the two prisms are
formed of two intrinsic matter substances with dif-
ferent densities, the obtained value for the prisms
density must be considered as an equivalent one.

 12.A.6.4. Summary about the gravitation
(A) The Super Gravitation can be regarded as a
result of energy interaction process between in-
trinsic matter objects in empty space

(B) The SG vibrations in QP are characterized
by the SGSPM vector. All upper order QPs
from one prisms have synchronized common
mode of their quasispheres
(C) SG forces of the prisms exhibit anisotropy
due to the strong alignment of the higher order
quasipentagons
(D) The propagation of SG forces between
prisms in empty space is carried out by the SG-
SPM vector
(E) SG forces between prisms of the same type
(substance) are quite stronger than SG forces
between prisms of different types, but in some
particular cases they may decrease significantly 
(F) The handedness of the SG field of the prism
is memorized in its lower level structures. Some
of the lowest level memory about the handed-
ness (cirality) is able to survive the prism’s recy-
cling process (taking place in the galactic cycle).
(G) The Newtonian gravitation is a propagation
of the Super Gravitation in CL space environ-
ments for a long range distance. The velocity of
its propagation is limited by the CL node reso-
nance frequency, which defines also the light ve-
locity.

The feature (E) may explain the refurbish-
ment of the lattices in some particular cases.

12.A.8. Processes of primordial bulk matter of 
two substances leading to eruption

12.A.8.1. Considerations for the low order 
structure growing 

Let consider a quantity of bulk matter (of pri-
mary balls) of a single substance only, possessing
the lowest possible energy. In such conditions even
a primary tetrahedrons could not be stable, because
it posses increased total energy due to the common
mode oscillations described by the SGSPM vector.
If a second bulk matter of same substance ap-
proaches and collide with the first one, the resultant
object will obtain energy larger that the sum of both
individual energies. Then the energy to mass ratio
of the new object of bulk matter may increase to a
level when conditions are obtained for creation of
PTs and even primary QPs and QBs. The primary
QB already have a possibility for 1 bit memory and
due to a common mode interactions only one of
both states (right or left-hand twisting) will domi-
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