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Chapter 10. Time, Inertia and Gravitation

10.1 Origin of time
 Regarded as structures, the prisms are not in

the lowest level of matter organization. They are
comprised of substructures organized in hierarchi-
cal orders. The possible configurations and proper-
ties of the lower level structures will be discussed
in Chapter 12 of BSM. In the same chapter, the fun-
damental structure carrying the primary frequency
etalon (defining the primary time base) and the
physical mechanisms assuring the consecutive di-
vision of the primary frequency in the upper order
structures will be discussed. The presented analysis
will put a light on the most fundamental law, un-
veiled by the BSM concept - the law of Intrinsic
Gravitation. Here, some aspects about the time
base and time scale will be apriory given.

The primary time base corresponds to the
theoretically known Planck’s time. According to
the BSM concept it is a period of the oscillation
mode of the lowest level structure, which is embed-
ded in all upper orders structures of the matter or-
ganization. The configuration of that lowest level
structure possesses also an embedded fine structure
constant (also discussed in Chapter 12 of BSM).
The Planck’s time is given by Eq. (10.1), while its
reciprocal value is known as a Planck’s frequency.

  (sec)             (10.1)

where: G - is the classical gravitational con-
stant in CL space, related with the Newton’s low of
gravitation

It is a question should G be used or Go (the
latter is the IG constant in empty space). 

We may make analogy between the primary
clock frequency in the computer (providing the pri-
mary time base) and the secondary frequencies
(time bases), obtained by division (the bus time pe-
riod, the period of memory refreshing and so on).
While the Planck’s time is accepted as a primary
time base, a specific natural mechanisms assure
secondary time bases by division of the Planck’s
frequency on large numbers. The mechanisms as-
suring such division are based on specific proper-
ties of the lowest level structures below the prism
level. These structures and their properties are pre-
sented and discussed in Chapter 12 of BSM.

The level of matter organization above the
prism’s level was already discussed in the previous
chapters. The CL node proper frequency, for exam-
ple, and the SPM frequency could be considered as
upper level frequencies (time bases) above the
prism’s level. In Chapter 2 it has been preliminary
accepted that the CL node frequency  belongs to a
next level of matter organization, but the analysis
about the IG origin in Chapter 12 (Cosmology) in-
dicates, that there is one intermediate  level be-
tween the primary time base and  the CL node
resonance (proper) frequency. For this reason, a
zero number is assigned for the primary time base.

Table 10.1 shows that secondary time bases
are likely connected to the primary one, defined by
the Planck’s frequency, as a result of some natural
process of frequency division.  The reciprocal pa-
rameters of these time bases are frequencies. The
difference between the four time bases (and fre-
quencies respectively) is quite large, so a natural
logarithm of the frequency, , is used.

Levels of matter organization              Table: 10.1
-------------------------------------------------------------------------
Level       Time       Frequency,           Type of oscilla-
    x           (sec)              (Hz)                                tion
-------------------------------------------------------------------------
   0       5.39E-44       1.855E43           99.629     
   1
   2       9.152E-30     1.0926E29         66.86       CL resonance
   3       8.093E-21      1.236E20          46.26       SPM, Electron
  -----------------------------------------------------------------------

Fig. 10.1 shows a plot of  versus the lev-
el of matter organization , x. 

 

                              Fig. 10.1

A robust line is fitted to the data of three
points, corresponding to the identified levels of the
matter organization. Despite the missing data for
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level 1, it will be shown in Chapter Cosmology,
that this assignment is logically correct. The CL
space exists in levels 2 and 3 of the matter organi-
sation, but not in level 0 or 1. The three data points
lies closely to a straight line if the frequency is plot-
ted as natural logarithm.

The very steep falling trend (having in mind
the logarithmic scale) might be explained by the
change of the inertial factor of the structures corre-
sponding to the particular level of the matter organ-
ization. We see that the relation between the trend
and the inertial factor (defined in Chapter 2) fol-
lows the rule: a larger inertial factor - a lower fre-
quency. Then we come to a logical conclusion that
the level zero should correspond to a matter organ-
isation with a smallest inertial factor. For now, we
may accept that this level corresponds to the bulk
primordial matter. Although, in Chapter 12 (Cos-
mology) we will see that it could be attributed to
the simplest material structure that possess oscilla-
tion properties.

The time base that we use in our observations
and experiments is a secondary time base. It is de-
fined by the CL space and more accurately by the
proper CL node resonance frequency. The latter
defines the light velocity and is also involved in the
permittivity and permeability of the free space (CL
space). While the primary time base is a constant,
the secondary time base is subjected to relativis-
tic phenomena as they are known by the General
and Special Relativity.

The physical origin of the primary time base
is discussed in Chapter 12.

 10.2 Inertia
The inertia of the matter we are familiar with (from
elementary particles to astronomical body) is one
of the most controversial and tough issue in phys-
ics. BSM allows a deeper insight into this feature of
the matter.

10.2.1 General considerations
The stable elementary particles are forma-

tions of helical structures. The external size of the
elementary particles are many orders larger than
the internode distance of the CL space or the indi-
vidual prisms. Even the electron that is the simplest

helical structure contains many thousands of
prisms.

The inertia, we are acquainted with, is a phe-
nomenon related with the motion of the stable par-
ticles in CL space environments. Having in mind
the finest helical structure formations with their in-
ternal lattices, it is apparent that the motion of any
elementary particle in CL space invokes unimagi-
nable number of fine interactions between the or-
dered fine structure of the particle and the CL
space. These fine interactions are behind the New-
ton’s inertia. The Newton’s first law, known as a
law of inertia is a macro effect from these interac-
tions (valid for particles, atoms, molecules and
macrobody formations of atomic matter) above the
level 2 of matter organization.

Body at rest remains at rest and a body in
motion continue to move at a constant velocity
unless acted upon by an external force.

In the inertial considerations about the Intrin-
sic Matter  (IM) provided in Chapter 2 it was shown
that the definition of the Newton’s law of inertia is
not able to explain some interactions between bod-
ies of IM in empty space. For this reason the iner-
tial factor was introduced by Eq. (2.7) and different
prism to prism interactions were discussed. It has
been mentioned that the inertial factor between
separate prisms is quite small. It arises to some lev-
el, when the prisms are combined in nodes and the
nodes - in gravitational lattice. The CL (cosmic lat-
tice) space is a global formation of such lattice fill-
ing a huge void space (in a classical meaning) that
is the observable Universe. For helical structures
moving in CL space the inertial factor is much larg-
er. This is a result of higher orientational order of
the twisted structures comprised of FOHSs with
their internal RL(T) structures.

The atom is a complex system comprised of
oriented helical structures whose electrical field is
neutralized in the far field due to a permanent dy-
namical interactions, as a result of the electrons
motion in quantum orbits. Due to the quantum fea-
tures of such system the orbital changes of elec-
trons does not affect the inertial property of the
system. The system inertial properties, however,
are inseparable from the CL space properties.

It is apparent from BSM concept that the
atomic matter (a matter we are familiar with) is dis-
tinctive from the Intrinsic Matter (IM) by some ba-
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sic physical attributes considered so far as
fundamental. These are: the mass and the inertia. In
order to distinguish them from the similar (but dif-
ferent) properties of the intrinsic matter we will re-
fer to them as mass and inertia (considering
Newtonian type), and Intrinsic Matter (IM) mass
and inertia. They are quite different.

The inertial mass could be detected only in
motion. From a point of view of the twisted prism
model, the motion interaction between prisms
could be attributed to the IG(TP) filed interactions,
while the gravitational interactions - to the IG(CP)
interactions. Similar interactions could be attribut-
ed also to the CL nodes. The elementary particles
are built of ordered helical structures, which are
built of the same type prisms in well defined spatial
order. Then the gravitational interactions between
the elementary particles could be attributed to the
IG(CP), while their inertial interactions - to the
IG(TP) of the prisms, having in mind that the
RL(T) of any helical structure contains the essen-
tial fraction of all prisms, from which they are built.

The same considerations could be further
propagated to the atoms, molecules and a macro
body, keeping in mind the very complex but well
organized helical structures assembly. In such as-
pect we may consider that the gravitational
mass of any object (of atomic matter) is caused
by the IG(CP) field interactions between two or
more bodies, containing a large number of heli-
cal structures. In this case the CL space serves
as a mediator. It propagates the interactions be-
tween the two bodies by its IG(CP) field.

The CL space parameter related to the inertia
is the equivalent inertial mass of the CL node
(mnode). In Chapter 2, §2.11.3, this parameter was
theoretically estimated by the fundamental physi-
cal constants and the derived parameters of the
quantum wave. (Eq. 2.48 in Chapter 2). The same
expression is shown here.

                             [(2.48)]

The estimated value of the CL node equiva-
lent inertial mass for the local Earth field is about
6.95E-66 (kg). It seams that Eq. (10.5)  involves
only CL space parameters, however, the Planck
constant (h) and the Compton frequency ( ) are
characteristic parameters of the electron, as well.

From the other side, the electron (positron) struc-
ture could be regarded as a building element of the
stable elementary particles as the proton and neu-
tron (including their internal helical structures).
Consequently, the equivalent inertial mass
could serve as a relation parameter between the
CL space and the elementary particles from
which the atomic matter is built.

The relation parameter mnode is called
equivalent, because it lies on a breaking point in
a length scale where the IM inertial properties
are from one side of the scale and the Newtonian
inertial properties are from the other side.

This consideration is verified by some theo-
retical calculations (not provided here) for estima-
tion the number of prisms involved in the electron
structure, indicating that the classical inertial mo-
ment for example is not applicable for the inter-
node distance length scale.

The above highlighted consideration means
also that the equivalence principle, formulated by
Einstein, possessing a length scale limit. This mi-
croscale limit is reached when approaching the in-
ternode distance of the CL space. For this reason
the discussed below considerations related to this
principle are referred to the length scale above this
limit.

10.2.2. Equivalence between gravitation and 
inertia in CL space

The Newtonian gravitational mass, accord-
ing to BSM, is an attribute of the atomic matter de-
tectable due to the attraction forces between two
objects of atomic matter immersed in CL space.
Behind these attraction forces are the IG forces
propagated in CL space by the abcd interconnec-
tion axes of the CL nodes. While the time constant
of the IM is much shorter than the proper frequency
of the CL node (related to the speed of light), the
propagation of IG forces for a complex formation
(even such as an elementary particle) exhibits the
limitation factor of the CL node oscillation. That’s
why the propagation of the Newtonian gravitation
may exhibit the limit of the speed of light. In the
case of CL node synchronization as in a closed
magnetic line for example, this limit might be ex-
ceeded. This means a superluminal propagation of
some information (some recent experiments about
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a phenomenon called “quantum teleportation” are
manifestation of such effect according to BSM
analysis). In a normal CL space, the IG forces may
leak in very close distances of dens atomic objects
(some Van der Walls forces between atoms and
molecules) or in a case of very well polished sur-
faces in proximity (Casimir forces).

The equivalence between gravitational and
inertial mass (both of Newtonian type) is estab-
lished and verified principle in contemporary phys-
ics. From the point of view of BSM we may add,
that it is valide for particles comprised of helical
structures containing a second order of helicity and
placed in CL space environment.

The gravitation-inertia equivalence princi-
ple means that there is a balance between IG(CP)
and IG(TP) fields for the system comprised of the
interacting bodies and the CL space involved as
mediator.

From the above considerations it follows,
that the mass equivalence principle from a BSM
point of view may be formulated as:
• In CL space environment the gravitational 

mass of particle comprised of helical struc-
tures is equal to its inertial mass

10.2.3 The involvement of the fine structure 
constant in the motion interactions between the 
elementary particles and CL space
From the Newtonian inertial and gravitational con-
siderations in the previous paragraph it is apparent
that the IG(CP) and IG(TP) prisms interactions are
involved. Then we may use the relation between
these two parameters initially adopted in Chapter 2
§2.9.6.B (Eq. 2.A.17.C) that was later  validated in
Chapter 9 of BSM from the analysis about the mo-
lecular vibrations (section 9.7.5.C) and the binding
energy between the proton and neutron in the Deu-
teron (section 9.12.1).

                       (2.A.17.C)
where:  - is the fine structure constant,

IG(TP) - is the intrinsic energy in which the twisted
part of twisted prisms (model) is involved, and
IG(CP) - is the intrinsic energy in which the central
part of the prisms (model) is involved.

The fine structure constant is a characteristic
feature of the electron confined motion. In Chapter
3, where it was shown that it could be expressed by

the CL space parameters and the electron geomet-
rical parameters (equations (3.9), (3.10, (3.11),
(3.12).

 It has been shown in Chapter 3 that one of the
electron structure parameters - the helical step, for
example, is completely defined by the CL space pa-
rameters

           
                                   [(3.13.b)]

where:  - is the helical step of the electron
structure,  - is the Compton frequency (primary
proper frequency of electron) , c - is the light veloc-
ity.

From the cited above equations it is also ap-
parent that the fine structure constant is related to
another important parameter of the CL space - the
Compton wavelength (or frequency). The Comp-
ton frequency appears simultaneously a parameter
of the SPM vector (CL node parameter) and a first
proper frequency of the oscillating electron. The
second proper frequency (the frequency of the in-
ternal positron) appears to be three times the
Compton frequency (according to the analysis of
the electron behaviour in Chapter 3 and the Quan-
tum Hall experiments in Chapter 4).

The fine structure constant is related also to
other important characteristics of the orbiting elec-
tron: the orbital length and time (lifetime of excited
state). It was shown in Chapter 3 and 7 that the
quantum loop is defined by the Compton wave-
length, while the time duration (lifetime) by the
conditions of two consecutive phase match be-
tween the two proper frequencies of the electron),
taking into account the relativistic gamma correc-
tion.

10.3. Analysis of the inertial interactions of the 
atomic matter in CL space
In the analysis of the inertial interactions of the
atomic matter in CL space, the gravitational field
must be taken into account. Let assume that every
object of atomic matter is able to modulate the sur-
rounding CL space. We may consider two types of
CL space modulation: 
(a) relativistic CL space modulation

- GR effect of space curvature
- SR effect of mass increase and time dilation

EIG TP( ) 2αEIG CP( )=
α
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αc
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(b) gravitational (Newtonian) modulation
The space curvature of GR effect is obviously

caused by a slight change of the internode distance
due to the gravitational influence of the body mass.
The effect is very weak due to the small influence
of the very rarefied atomic matter of the body in
comparison to the high density matter of the
prisms, from which the CL nodes are formed. The
slight change of the internode distance respectively
causes a slight change of the CL space parameters
including the light velocity.

The SR effect of the mass increase and time
dilation is a result of the changed conditions of the
confined motion of the electron at very high veloc-
ities.

One of the problems of the Special Relativity
is the lack of an absolute reference inertial frame.
In such case any inertial frame could be selected as
a reference. This provides an ambiguity in the ex-
planation of the so called “twin paradox”. If the
first twins is on the Earth, while the second one is
travelling with a relativistic velocity, from the
point of view of the first twins the second one will
be left younger. From the point of view of the sec-
ond twins, however, the first one is travelling with
a relativistic velocity and he (first twin) must be left
younger. This paradox does not exists in the BSM
concept about space.

In Chapter 12 (Cosmology) it becomes ap-
parent that there is an absolute reference point in
the space, this is the centre of the local Galaxy.
This conclusion matches the quite logical scenario
of the Universe and galaxy evolution presented in
Chapter 12, supported by considerable number of
observations  and experimental analysis.

The gravitational modulation of the CL space
could be regarded as a formation of a local CL
space conditions.

Someone may rase a question that the provid-
ed concept contradicts to the established so far vi-
sion about the speed of light independence from the
object motion. Here we must emphasize that the
Michelson-Morley experiment is inconclusive
from the point of view of the alternative vacuum
concept. This experiment and many similar rely
from one side on a Doppler shift effect (1) and from
the other on a possible aberration (2).

(1)  In CL space environments the Doppler
shift is explainable quite well. If we have emitter

and detector moving with one and a same not rela-
tivistic velocity the positive (or negative) Doppler
shift of the emitter will be fully compensated by the
negative (or positive) Doppler shift of the detector.
This is valid for the arm of the Michelson-Morley
experiment aligned with the Earth velocity. For the
perpendicular arm the Fizserald effect takes place
due to the SR influence of the Earth motion. From
the BSM point of view it is reasonable, because in
fact the CL space grid determines the positions be-
tween the atoms and molecules even for a rigid
body and the light propagation coordinates, as well.
In such case the searched effect of the light velocity
from the motion is undetectable. Further the Earth
rotational velocity of 458 (m/s) is comparatively
smaller than the Earth motion around the Milky
way 238 (km/s).

10.3.1. Gravitational field and local CL space.  
Definition of Equivalent Separation Surface 
(ESS). 

In Chapter 12 (Cosmology) quite strong ar-
guments are provided for the stationary Universe.
It is shown that the two basic arguments of the con-
cept of the Big Bang and expanding Universe are
wrong: the assumption that the Universe space is
homogeneous from which automatically follows
that the galactic red shift is of Doppler type. The
BSM concept about the physical vacuum, however,
leads to the conclusion that the Universe is station-
ary. This  is supported by numerous observational
results, when properly interpreted from the point of
view of the new concept of the physical vacuum.

All galaxies contain own CL space, con-
nected to the CL space of the neighbouring gal-
axies, so the CL spaces of the connected galaxies
are stationary each other. The galaxy matter is
rotated within the own galaxy space around the
point of the largest mass identified recently as a
supermassive black whole. The galactic CL
space is strongly influenced by this mass and
consequently it may serve as an absolute refer-
ence point. (This is confirmed in the observational
analysis provided in Chapter 12).

The solar system with all planets and satel-
lites is immersed in the Milky way galaxy CL
space. It is evident that the rotational velocity of the
solar system could be detected if observing extra-
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galactic sources. The average rotational velocity
according to Duari (1992) is 238 km/sec. This ve-
locity is quite away from a relativistic velocity, but
it means that every object even at the microscale
range down to the helical structures of the elemen-
tary particles is ablated by flying CL nodes. One
may raise a question how this could be possible.
However, when we take into account that the IG
forces are propagated in a pure void space practi-
cally instantly (because the relaxation constant of
the low level matter organization corresponds to
the range between the CL node oscillation period
and the Planck time) this assumption looks quite
reasonable. Now taking into account only the influ-
ence of the Newtonian gravitation on the surround-
ed CL space we may accept the following
approximation:

The CL space surrounding the atomic
matter behaves like a stationary one

For atomic matter moving through the galaxy
space the CL nodes are disconnecting in the prox-
imity of the RL(T) envelopes of the helical struc-
ture (of the elementary particles) following a
displacement and after that  - a return and recon-
nection to the CL space. The disconnected nodes
are partly folded while the energy of their displace-
ment is preserved as a rotational moment (keeping
in mind the intrinsic inertial factor of the prisms).
Such envisioned process is in fact behind the iner-
tial properties of the atomic matter in CL space.

In the analysis of the inertial interactions of
the atomic matter in CL space, the effects of the
General Relativity (GR) and the Special Relativity
(SR) could not be ignored. The operation in
Minkowski space, however, makes the analysis
very complicated. BSM found a way to analyse the
inertial interactions without ignoring the GR and
SR effects.

First, let explain how the formulated by GR
space curvature phenomenon is understood from
the point of view of BSM. We may use an imagi-
nary absolute scale (discussed in Chapter 2) whose
unite vector is unshrinkable. The estimated (un-
shrinkable) size of the proton, for example may
serve for this purpose. If considering that the CL
space around some material object (of atomic mat-
ter) is stationary, the space curvature will means a
gradually shrinkage of the internode CL distance
when moving from a larger to closer distance to the

object. This shrinkage is quite small, due to the
week influence of the object atomic matter (with a
lower spatial density) on the highly dens matter of
the prisms from which the CL nodes are formed.
The small shrinkage, however, will influence also
the proper resonance frequency of the CL node.
This means change of the light velocity and other
other parameters (permittivity and permeability) of
the shrunk CL space. We may refer this space as
a local CL space, accepting also that every body
possessing a Newtonian gravitational field could
be regarded as possessing a local CL space.

The above conclusion will allow to analyse
inertial interactions between massive bodies, ap-
plying the inertial interactions between elementary
particles and CL space which will be discussed in
this chapter.

In order to simplify the analysis of gravita-
tional and inertial interactions between massive
bodies at distances larger than their radius we will
introduce a simplified model of a local CL space
with a constant internode distance, but having an
equivalent separation surface at which the inter-
node distance changes sharply. Let considering an
ideal case of a heavy spherical material object with
own gravitational field immersed in the Galactic
CL space but very away from any other gravita-
tional field (practically undetectable). We may re-
gard the space curvature  of GR as an influence of
the gravitational field of the object on the internode
distance of the surrounding CL space. The inter-
node distance of this space will be slightly shrunk
with a gradient decreasing with the distance from
the object. This of cause will change slightly the
proper resonance frequency and the SPM frequen-
cy of the CL nodes.  For a massive spherical body
(with spherical density symmetry) the space curva-
ture can be presented as usually as a surface plot
having a bell shape. The section of such plot with a
normal plane is a bell shape curve as shown in Fig.
10.2. 

The bell shape curve could be approximated
by a rectangular function possessing the same area
as shown in the figure. Then the three dimensional
space curvature according to GR could be repre-
sented as an equivalent sphere characterized by:

- a constant space grid density, corresponding
to the parameter h of the rectangular curve
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- an equivalent separation surface with a
shape of sphere with a radius r

Fig. 10.2. Bell shape curve SC obtained as a section of
the space curvature with a normal plane. The rectangular
function with a same area has a height h and radius r. The lat-
ter defines the Equivalent Separation Surface (ESS) of a
sphere enclosing an imaginary space with a constant inter-
node distance

 
The CL node distance in the equivalent

sphere will have a sharp difference at its edge in
comparison to the galaxy CL space in which it is
immersed.  For this purpose we introduce the term
Equivalent Separation Surface (ESS) of the lo-
cal CL space of the object. For a spherical body
(with a spherical symmetry of its matter density)
the size of EES is defined by the radius r as shown
in Fig. 10.2.

The adopted assumption simplifies the analy-
sis of a single body, by association of the properties
of the gravitational field to some properties of the
surrounded CL space called a local CL space. In a
case when a less massive body is in the gravitation-
al field of a more massive one it appears that the CL
space of the less massive one is immersed in the CL
space of the more massive one, however, both of
them, in fact, are immersed only in the galactic  CL
space. For this reason we need to keep in mind
that the local CL space is also imaginary, mean-
ing that the surrounding galactic CL space is lo-
cally modulated by the local gravitational field.

The analysis of number of cosmological phe-
nomena, observations and experiments in Chapter
12 indicates that the CL spaces of the galaxies are
stationary. Then the galactic CL space can be con-
sidered as an absolute reference frame.

10.3.2 Relation between gravitational local field 
and CL local space

A. Atoms and molecules in a gas substance

Single particles, atoms and molecules are at-
tracted by the Earth gravitational field, according
to the Newton’s gravitational law. We may accept
that they posses a local gravitational field but only
in close proximity which is undetectable. We may
consider, that they are immersed in external CL
space. If they are quite away from any massive
body, they appear immersed only in the Global
(galaxy) CL space. Otherwise they are immersed in
some massive body CL space. The helical struc-
ture, however, possesses its own quantum qua-
sishrunk space due to the own electrical field (see
Chapter 2 and 9). This is valid also for a particles
with a proximity locked electrical field (such as the
neutron, and the pair pions inside the proton and
neutron). 

B. Atoms and molecules included in a mas-
sive body

The atoms and molecules included in a mas-
sive solid body do not possess freedom as in a gas
substance. They may vibrate around a fixed point,
but their average positions are fixed. Their individ-
ual gravitational fields contribute to the local grav-
itational field of the massive body. This body has a
local CL space contributed by all individual parti-
cles. The involved single particle could only mod-
ulate the local gravitational filed and consequently
may possess a local CL space in their proximity,
but this effect is much smaller in comparison with
the local field. So they could be considered as im-
mersed in the common CL space of the massive
body. The particle also possesses own quantum
quasishrunk space in proximity, as in the case A.

10.3.3 Inertial interactions of moving FOHS
Let analyse the inertial interaction of simple

FOHS (first order helical structure), taking for ex-
ample the external positive shell of the proton. The
structure is immersed in the CL space of a massive
body, for example the Earth.  We will  consider two
cases, where FOHS is in rest or in motion in respect
to the external CL space (of the Earth). One single
turn of the external proton shell is a same as the
positron.

A. FOHS in rest: The structure is subjected
to pressure forces exercised by the static pressure
of the massive body CL space. This defines its
newtonian mass, that could be estimated by the
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mass equation. While the mass equation was de-
fined for the inertial mass of the electron (positron)
and could be applied for any elementary particle it
is quite clear that it is equal to the gravitational
(newtonian) mass.

B. In motion: The structure has the same
gravitational mass according to the postulated def-
inition of the equivalence between the inertial and
the gravitational mass. The displaced CL nodes
from the FOHS volume of the structure do not pre-
serve their normal shape. They are partially folded
and spinning.  So the particle motion is related with
continuous process of  folding and unfolding of CL
nodes. The folded nodes are not any more connect-
ed to the CL space and are displaced from their
original position. They return to their previous po-
sition and become again connected to the CL space
after their unfolding, when the particle is passed.

                                 Fig. 10.3
          Relative trace of two CL nodes in the 
reference frame of moving second order helical 
structure. The folded state of the nodes through 
the quasishrunk quantum space of the structure
 is shown by dashed lines 
The process is illustrated by Fig. 10.3, where

second order helical structure (containing FOHS)
is shown.

The E-field lines around the sections of the
FOHS are shown by dashed lines. They define the
quantum quasishrunk space of the particle. (Some
of the lines are proximity locked as a result of the
regulation effect of IG(CP) providing a charge uni-
ty). The two dark lines in the figure show two trac-
es of CL nodes, which become disconnected and
folded in the curved section of the trace. The folded
nodes intercept the denser E-field lines in the local
space at angle close to 90o. In this case the inter-
action with the local QE quasispheres is mini-
mal. In such way the proximity E-field of the
structure is able to guide the passing folded
nodes. Even the neutron has a proximity E-field,
that is not apparent in the far field, but has its sig-
nature - the neutron’s magnetic moment. So the
proton and neutron proximity E-fields perform a
guiding of the passing folded nodes.

The local CL space of single particles de-
pends on the matter quantity in the participating
helical structure. For single charge particle, howev-
er, the local space is not neutral but populated by
EQ type of CL nodes. In Fig. 10.3 this space is il-
lustrated by a gray colour. The E-field of charge
particle, however, is extended much beyond its lo-
cal field.

The particle may be a part of a large solid
body that has a local CL space. Then it is immersed
in this local space and simultaneously contributes
to it.

We may generalize some of the single parti-
cle features to a massive solid body. Then we arrive
to the following conclusions:
(a) For helical structure in motion, the energy
state of the folded nodes is changed in compari-
son to the normal nodes. The energy spent  for
folding in the “entrance” is returned back to the
system it in the “exit”. So in case of uniform lin-
ear motion or motion in equipotential surface
there is not any loss of energy. 
(b) The folded nodes of solid body are distribut-
ed in the volume of its local space according to
the local CL space gradient. The CL space gra-
dient, however, is much smaller than the gravi-
tational one due to the difference between
inverse cubic IG law (valide for CL node dis-
tance) and Newton’s gravitational law (valide
for the gravitational field)
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(c) The process of folding and guiding is assisted
by the proximity field provided by the internal
RL(T) of the FOHS.
(d) The folded nodes posses  spin momentum
and interact weakly with the CL nodes of the lo-
cal field. In such way they are able to provide an
uniform interaction in the whole volume of the
body local space.
(e) The folded shape of the nodes is kept by a dy-
namical interactions with the normal nodes of
the local space.
(f) The number of the folded nodes passing
through the local space for a non zero velocity is
proportional to the velocity of the structure.
Larger kinetic energy corresponds to a larger
number of passing folded nodes per unit time.
(g) For not relativistic motion the inertial mass
appears constant for different velocities. In such
case the time for folding and unfolding is much
larger than the resonance period of normal CL
node. For relativistic velocity the folding/un-
folding time becomes comparable to the reso-
nance period of the normal CL node. Then the
motion exhibits resistance that contributes to a
relativistic mass increase.

10.3.4 Relativistic effect as a physical phenom-
ena

From the above considerations it is apparent,
that the folding and unfolding time depends on the
structure velocity. The structure shape is un-
changed, so the both times are equal. It is evident,
that for not relativistic and relativistic velocity the
following conditions are valide:

  - for not relativistic motion                    (10.6)
  - for relativistic motion                          (10.7)

where:  - is the folding (unfolding) time, 
is the resonance period of  normal CL node

The resonance period determines the light ve-
locity according to light equation (Chapter 2). The
trace of the resonance cycle of a single node shown
in Fig. 2.26, Chapter 2 is almost a flat curve and
may have a finite resonance width. The resonance
cycles between the nodes in the local field volume
are synchronized by the Zero Point Waves but this
is not very strong connection between the individ-
ual nodes. As a result of this some domains may ex-
hibit drag of their resonance frequency affected by

the interaction with the spinning folded nodes.
Such interaction provides effect of increased iner-
tial mass of the moving structure. Note, that due to
the spatial distributed features of the interacting do-
mains the effect appears  continuously dependent
on the increasing velocity. This phenomenon
stays behind the relativistic increase of the  mass
according to the relativistic equation:

                                                (10.8)

where                          (10.9)
The gamma factor used in the relativity was

derived in BSM by the analysis of the electron con-
fined motion ( Chapter 3, section 3.11.A).

From the physical analysis of the relativistic
effect, it is evident, that the mass increase is a result
of the quantum forces. These forces, however, have
some limiting holding range. For a small single
particle as the electron, for example, they may suc-
ceed to hold the continuity of Eq. (10.8) for large
relativistic velocities. If the particle, however, is
very fast accelerated by a large pulse energy, the
Eq. (10.8) may break. The natural conditions for
such event in free CL space, however, are not so
common. One example of partial break of Eq.
(10.8) is the synchrotron effect in the particle accel-
erators. However, in any conditions of partial break
of Eq. (10.8) the principle of the energy conserva-
tion is preserved. The energy balance of the system
particle - CL space is preserved by releasing of
gamma photons by CL space that surrounds the
particle.

10.3.5 Body with own local field in rest
Let analyse the motion of massive body with

its local field (CL space) immersed  in external lo-
cal field (CL space).

The provided concept of inertia requires a
special attention for a body with a local CL space
at rest. The problem may be referenced again to the
proton in a massive body, when latter possesses a
own CL space. Let consider a body motion with
continuously decreased velocity. We see that con-
sideration (e) of §10.3.3 provides some problem for
zero velocity. According to this conclusion, when
approaching zero velocity it will be some moment,
when all folded nodes should be expelled from the
volume of the local field. But where they will go?

tF tR«
tF tR<

tF tR

m moγ=

γ 1 V2/c2–( )
1/2–

=
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If the expelled folded nodes convert to normal
nodes, then the CL static pressure in the surround-
ing domain will be increased. The CL space could
not tolerate also a not uniform distribution of the
folded nodes because this would cause large gradi-
ents of the background temperature and conse-
quently the ZPE. Such effect is not observed,
because the ZPE is kept constant due to the  zero
point waves. Obviously, the system provides a
feedback assuring the energy carried by the folded
node in a unit volume of CL space to be a constant
value. This will be proved later by the theoretically
found optimal ratio between the normal and folded
CL node pressures. This effect means that some
number of folded nodes always exist in the volume
of the local space.  But then one problem needs a
solution: When the body with a local space  is in
rest, the folded nodes could not have zero velocity,
because this contradicts to the consideration (d)
and (e) of  §10.3.3. So they must circulate inside
the body local field. But if they have a finite veloc-
ity they should circulate only inside the local field
volume. This means that when the velocity is de-
creased from some finite value to zero, the state of
the motion of the folded nodes will be changed in
some point, i. e. the individual velocity vectors will
be changed.  As a result of this some threshold must
exist  when accelerating a body from rest, but this
is not reasonable. Consequently the option of circu-
lating folded nodes in a body local field in rest does
not provide a satisfactory solution from energetic
point of view.

Practically, the discussed inertial behaviour
of a solid body could not be observed in our solar
system since it moves with a velocity more than a
two hundred km through the Milky way CL space. 

Phenomena related with this motion are ana-
lysed later in this chapter.

10.3.6 Conclusions: 
(a) There is not a body in the Earth and in

the Solar system, that is in absolute rest in re-
spect to the Milky way Global CL space.

(b) The internal space of a body in a rest in
respect to the Earth contains passing folded
nodes from external CL spaces (Sun’s and home
galactic CL space) in which the Earth is im-
mersed.

(c) When operating with local CL spaces
(imaginary, but defined for convenience) the
equivalent velocity vector of the folded nodes is
a vector sum of the velocities of every upper lev-
el of local spaces until the final one - the home
Global space of the Milky way.

(d) the number density of the folded nodes
does not depend on the number of upper local
levels, but of the vector sum of their absolute ve-
locities referenced to the motion in respect to the
global CL space.

(e) The absolute amount of folded nodes in
the local field in rest could be determined if
knowing the following parameters: the local
field volume, the node density and the resultant
velocity from all above levels.

(f) It is more convenient to operate with the
energy of the folded nodes instead of their
number, because the spin momentum of the
folded node is taken into account. In this case
the expressions are referenced to the relative ve-
locity in Earth local space in which way the
physical constants that are valid for Earth local
field could be used.

10.4 Theoretical analysis of the inertia in CL 
space. Partial CL pressure and force moment

From the conclusions made in §10.3.6 it fol-
lows, that we need a reference frame. All the phys-
ical  constants related to CL space parameters are
valid for the Earth local space. For this reason, we
must use the imaginary defined local CL space of
the Earth, so our analysis and equations about the
inertia should be referenced to this frame. In this
case the consideration (f) of §10.3.6 is valide.

The basic CL space parameters involved in a
definition of the newtonian mass of the particles is
the CL static pressure.  Relying on the considera-
tions discussed in §10.3.6 we may express, the in-
ertial interaction as a partial CL pressure. This
parameter should characterise the interaction be-
tween the folded nodes and the particles involved
in the moving body. From consideration (e) of
§10.3.3 it follows, that this pressure should be pro-
portional to the body velocity referenced to the ex-
ternal CL space. According to §10.3.3 (g) the
motion analysis depends on the velocity range due
to the relativistic effect. For simplicity, we may
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separate the analysis into a not relativistic and rel-
ativistic case.

10.4.1 Partial CL pressure for a motion with 
not relativistic velocity and force moment of the 
folded nodes

The static CL pressure was defined as a real
physical parameter of CL space (Chapter 3) by us-
ing the geometrical parameters and oscillating
properties of the electron. Then this parameter was
used for definition of the mass equation. We may
define a partial pressure as a parameter of the fold-
ed nodes passing through the normal CL structure.

Let provide initially a definition of the Partial
Pressure whose validity will be later proved in sec-
tions §10.4.2, §10.4.2. We may assign this param-
eter as an attribute of the amount and the rate of the
folding CL nodes when the elementary particles
(comprised of helical structures) moves through
CL space. It is apparent that this parameter could
depend on the particle velocity, so it should not be
a constant like the Static and Dynamic CL pressure.
However, it may have an optimal value that is dic-
tated by the optimal interactions between the parti-
cle of motion and the CL space. In this aspect we
will use again the electron whose geometrical and
dynamical parameters were identified in Chapter 3.
From its motion behaviour we found that it has a
preferable velocities. Then we may expect that the
partial pressure of CL space for not relativistic ve-
locities may have also an optimal value. Let define
this parameter in a way to have a dimensions of
pressure and call it a Partial Pressure of CL
space. Since it depends on velocity, it is not con-
stant, but could be regarded as an optimal value of
pressure.

                                   (10.10)

where:       -   is the static CL pressure    (3.51)

where: PP - is the partial pressure (optima
pressure value),  - is a velocity of the structure
referenced to the external CL space, Ve is the elec-
tron volume, PS is one of the form of the static CL
pressure equation defined in Chapter 3 (in one of

modified form the product  could be used in-
stead of ).

While the parameter PS is defined for the
electron, we may expect to use it also for other ele-
mentary particles, in a similar way as the Static and
Dynamic CL pressures. This expectation is sup-
ported by the considerations that the electron (pos-
itron) structure is implemented in the structure of
any elementary particles. One major difference, to
be taken into account, is that the electron possesses
oscillation freedom, while the proton and the neu-
tron do not possess such. However, everyone  of
them exhibits a well defined Broglie wavelength,
when in motion that is an indication of interaction
with the CL space.

The defined parameter Partial CL pres-
sure expresses the relation between the energy
of the folded nodes and the particle velocity ref-
erenced to the electron.

10.4.1.A. Inertial force moment of folded nodes 
(moment of force)

Multiplying Eq. (10.10) by the electron vol-
ume we get a parameter with dimensions [Nm].
This is a dimension of energy, but it could be con-
sidered also as a force moment.

  So the inertial force moment for the electron
is given by  Eq. (10.10.a) 

              (10.10.a)

where: EIFM - is a force moment (posessing a
same dimensions as energy), Ve - is an electron
volume,  - is the relative velocity between the
electron and the CL space.

We prefer to use a force moment definition
(instead of energy) in order to distinguish its spe-
cific nature. It is implicitely valid for the folded
nodes only. Physically, it expresses the work for
deviation of the folded nodes from their straight
trajectory. (Remeber that for a structure with stable
geometry moving with a constant velocity, the
work for folding the CL nodes in the entrance is ex-
actly retutned at the exit).

We see that the right side of Eq. (10.10.a)
contains one vector parameter - the velocity ( ),
while all others are scalars. Consequently the
force momentum is a vector.

PP PS
υ
c
---α= N

m2
------

PS
hνc
Ve
--------=

υ

mec2

hνc

EIFM PPVe hνc
υ
c
---α= = Nm[ ] J[ ]≡

υ

υ
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From the Newton’s low of inertia it follows
that the inertial mass could be estimated only dur-
ing accelerated or decelerated motion. Only in such
case the inertial force appears, according to the
Newton’s law: . Let estimate the momen-
tum of this force by using the defined parameter of
partial pressure. The dependence of latter from the
velocity requires the estimation to be done for a
small deviation at some selected velocity. It is con-
venient to use the first harmonic velocity of the
electron, equal to . The choice of this velocity
matches also the conditions for derivation of the
CL static pressure and the mass equation in Chap-
ter 2. In order to eliminate the velocity dependence
we will estimate the force moments for two close
velocities   and , where  is a
small velocity change. The forces corresponding to
these velocities are respectively F1 and F2. Substi-
tuting the velocity  in Eq. (10.10.a) with these two
velocities (in brackets) we get respectively the
force moments corresponding to the two cases:

                           (10.11)

                           (10.12)

The force moment difference is: 

                             (10.13)

The kinetic energy for the two cases ex-
pressed in a classical way are respectively:

                             (10.14)

                             (10.15)

The kinetic energy difference is
                             (10.15.a)

Now comparing (10.13) and (10.15.a) we see
that they are equal, because after simplification
they lead to equivalent equation (known as elec-
tron-positron ”annihilation”).

                                          (10.16)

Conclusion: 
The equality between the force moment

difference  and the kinetic energy dif-
ference  indicates that the concept of

the force moment defined by Eq. (10.10.a) is cor-
rect. 

The correctness of the force moment defini-
tion is confirmed also later in this chapter, where it
is used successfully for a motion analysis of astro-
nomical objects, like the planets and satellites in
the solar system.

Discussion: The obtained equivalence by Eq.
(10.16) matches the “annihilation” energy for the
electron rest mass, despite using the velocity value
of , that approaches the relativistic motion.
However, this is the velocity of the optimal con-
fined motion of the electron. The static CL pressure
and the mass equation are defined for the same
conditions of particle motion. The application of
such conditions for derivation of the mass equation
in Chapter 3 and its successful application in
Chapter 6 confirms the equivalence between the
newtonian mass and the “annihilation energy”.
While the meaning  of the “annihilation” is broad-
ly used in the modern physics  it is logically incor-
rect according to BSM theory.  

Knowing the newtonian mass relation be-
tween electron structure and any other particle
comprised of FOHSs, we may express the force
momentum of any particle by the equation:

                         (10.16.a)
where: VSC  - is a volume of a single coil

FOHS, but multiplied with a proper factor (1 for a
negative; 2.25 for a positive external shell of
FOHS).

10.4.1.2 Partial pressure for relativistic motion 
and relativistic mass increase

From the definition equations of the static
and partial CL pressure we see, that the parameter
velocity is involved only in the partial pressure.
Then the factors influencing the relativistic veloci-
ty become separated. Such kind of separation will
be of great importance for the physical understand-
ing of some relativistic phenomena. Let provide a
verification test about such important outcome.

It is known from the theory of Special Rela-
tivity that the dependence of the mass from the ve-
locity is equal to the rest mass multiplied by the
relativistic gamma factor. Using again the electron
as a reference particle we have:

F ma=

αc

αc dυ+( ) αc dυ–( ) dυ

υ

EF1 hνcα2 hνcα
c

------------dυ+=

EF2 hνcα2 hνcα
c

------------dυ–=

EF1 EF2– 2
hνcα

c
------------dυ=

EK1
1
2
---me αc dυ+( )2=

EK2
1
2
---me αc dυ–( )2=

EK1 EK2– 2meαcdυ=

hνc mec2=

EF1 EF2–( )
EK1 EK2–( )

αc

EF PPΣVSC= Nm[ ] J[ ]≡
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 , where: 
meR - is the electron mass at relativistic ve-

locities
Using the mass energy equivalence

, we see that partial pressure for relativ-
istic velocity will get multiplication factor . Let
obtain the partial CL pressure at the optimum quan-
tum velocity of the electron corresponding to ener-
gy 13.6 eV. Its axial velocity is .
Substituting this value for the velocity and in the
multiplying factor  we get the partial pressure ex-
pressed by electron geometrical parameters at its
optimal confined motion.

                 (10.17)

It is evident right away that we may obtain
the ratio between the Static and Partial pressure at
such conditions (of optimal confined motion of
electron).

                      (10.18)

To verify the physical validity of the obtained
equation (10.18) let calculate its reciprocal value.
We get:

We get very close number to the electron rev-
olutions in one quantum orbit corresponding to the

 quantum orbit. determined in Chapter 3 by Eq.
(3.43.h)

                      [(3.43.h)]

Having in mind that the second proper fre-
quency of the electron is  (the frequency be-
tween the shell of internal positron and the central
negative core) it is evident that the second proper
frequency will have a whole number of cycles if the
fractional value is 1/3 (condition for standing
waves in the short magnetic line conditions see
Chapters 3 and 7). Equalizing the equations (10.18)
with [(3.43.h)] we arrive to the equation of the hel-
ical step of the electron ( , that has been derived
by different physical approach in Chapter 3.

                                           (3.13.b)

There are two important additional conclu-
sions from the provided analysis:

- the helical step of the electron is completely
defined by the CL space parameters

- having in mind the energy mass equivalence
equation applied for the electron, ( ) the
ratio  defines also the parameters of the first
harmonics quantum wave (511 keV).

We may summarize:
• The Partial pressure is a parameter charac-

terizing the folded nodes. It is directly
involved to the definition of the inertial
properties of the atomic matter by the vector
parameter Inertial Force Moment, .

• The definition concepts of the static and par-
tial CL pressure are in full agreement with
the relation between Newtonian mass and
inertial properties of the electron. All kind of
helical structures included in the proton’s
(neutron’s) structure could be referenced to
the electron structure. Consequently the
derived concept should be valide for all kind
of atomic matter.

• The ratio between the partial and static pres-
sure  of the CL space is a constant value
determined entirely by the fine constant
according to Eq. (10.18). This ratio defines
completely the helical step of the electron
structure according to Eq. (3.13.b).

• The ratio  is a self standing CL space
parameter valide for a first harmonic quan-
tum wave (511 keV).

10.4.3 Specific partial pressure 
The CL static pressure expressed by the elec-

tron mass density  (see §3.13.3 Eq. (3.55) and
(3.56), Chapter 3) is given by the expression:

                                            (10.19)

where:                      (10.20)

 is the electron’s density  

Applying the general Eq. (10.7) for a not rel-
ativistic motion and using the specific partial pres-
sure    one obtains:

                                        (10.21)
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Eq. (10.21) shows that the partial pressure is
proportional to the velocity of the electron struc-
ture, because the product in the bracket is a con-
stant. (Note that this is valid for any value of not
relativistic velocity). This product depends only on
the CL space parameters and the electron density.
Knowing that the volume of any FOHS structure
could be referenced to the electron’s volume, the
product in the brackets in Eq. (10.21)  can be re-
garded as a specific parameter of the motion of any
particle consisted of FOHSs. We may call it a spe-
cific partial pressure, denoted by pp. Expressed
by the physical constants it is

  (10.22)

Having in mind that gyromagnetic factor 
of the electron is determined by the CL space, it is
apparent that the new defined parameter  is com-
pletely defined by the CL space. From the addition-
al considerations:

(1) both parameters: the static pressure and
the specific partial pressure of CL space are refer-
enced to one and same structure - the electron, us-
ing the volume of its FOHS.

(2) any FOHS could be referenced to this vol-
ume

(3) the volume of any FOHS of a stable parti-
cle is a constant in CL space environment

We may conclude:
(a) The specific partial pressures estimated

by the electron geometrical parameters is valide
for all types of helical structures with second or-
der helicity

(b) The total force moment of any complex
particle consisted of helical structures could be
estimated if knowing the total volume of its
FOHSs.

10.4.4 Force moment of the neutron and proton
From the mass equation we know that the

neutron to electron mass ratio is equal to the ratio
of their FOHSs volumes with proper correction
factors for positive FOHSs and kaons.

For case of not relativistic velocity, applying
Eq. (10.10.a) and substituting PP by its definition in
Eq. (10.10) we get:

 

Substituting  one obtains:

         for neutron          (10.23)
         for proton           (10.24)

Eq. (10.23) and (10.24) are the force mo-
ments for neutron and proton, respectively. The pa-
rameter in the bracket is a constant. Its values for a
neutron and proton is pretty close, so it could be
named a specific force moment of hadron (proton
or neutron).

If using the envelope volume of the proton or
neutron (estimated in Chapter 6 as 71.72 times
larger than the total volume of all FOHSs of the
neutron), the force constant could be expressed by
the specific partial pressure, whose relation to the
CL space parameters is given by Eq. (10.22).   Then
the force moment of a moving neutron is given by:

                                   (10.25)

where: the factor 71.72 is the ratio of the vol-
umes 

 estimated in Chapter 6, and Vn is the
envelope volume given by 

                              
where: Rc is a Compton radius, rp - is the

small radius of the positive FOHS, Lpc - is the
length of the proton (neutron) core.

Both equations (10.23) and (10.25) provides
exactly the same value in the case of neutron.

For relativistic motion the force moment is
multiplied by the gamma factor.

The force moments given by Eq. (10.23) and
(10.24) are more convenient for practical applica-
tions. Eq. (10.25) provides an useful connection to
the fundamental physical constants. 

10.4.5 Inertial properties of the atoms and mol-
ecules

The local field of a portion of FOHS con-
tained in the proton was shown in Fig. 10.2.  From
the analysis and derived equations of inertial inter-
actions for electron and   neutron (and proton as
well) it is evident, that the energy of the node dis-

pp αcρe
ge

2hνc
4 1 α2–( )

παc4
----------------------------------- 3.34348 15×10= = = N sec

m3
-------------

ge

pp

VΣ/Ve mn/me=

EIFM hνc
VΣ
Ve
------αυ

c
--- hνc

mn
me
------αυ

c
---= =

me hνc/c2=

EIFM mncα( )υ=
EIFM mpcα( )υ=

EIFM pp
Vn

71.72
-------------υ=

Vn/VΣ

Vn Vp≈ π Rc rp+( )2Lpc=
Copyright © 2001, by S. Sarg                                                      10-14



BSM  Chapter 10.   Time, Inertia and Gravitation                                                            Second edition, 2005
placement from the FOHSs is only involved. It is
reasonable to consider, that additional energy of
folding  in the entrance is also involved, but it is re-
turned to the system in the exit where the folded
nodes are unfolded to their normal shape, becom-
ing again part of the CL space. Particles as elec-
tron, neutron and proton are hardware
structures whose dimensions are not affected in
result of the motion. The same assumption could
be accepted for a single atomic nuclei. There-
fore, for a single particle of the above type we
may ignore the folding - unfolding energy in our
calculations. If ignoring, in first, the general rela-
tivistic effect of CL shrink around a mass object,
we arrive to the following conclusions:

(A) The inertial force moment of a moving
atom is a sum of the force moments of its pro-
tons and neutrons.

When the general relativistic effect is taken
into account:

(B) Considering the general relativistic ef-
fect in atomic nucleus requires a correction of
the inertial force moment by the  nuclear bind-
ing energy. The latter is expressed by the equiv-
alent mass deficiency (difference between total
mass of neutrons and protons minus the atomic
mass).

The binding energy expressed by the mass
deficiency is: 

The atomic force moment could be obtained
by applying  considerations (A) and (B) with Eqs.
(10.23) and (10.24).

where: Z - is the number of protons, N - is the
number of neutrons, EB is the nuclear binding en-
ergy.

The  atomic mass is: ,
so  the obtained  expression of the atomic force mo-
ment is:

  for atom                     (10.26)
where: A - is the atomic mass, u - is the atom-

ic mass unit.

10.4.6 Inertial properties of macrobody in 
motion with constant velocity

In order to provide a bridge between the iner-
tial properties of a single particle and material ob-

ject containing large number of atoms we need to
give definition of a macrobody  (massive body):

A macrobody is a material object contain-
ing a large number of atoms (or molecules)
whose integrity is kept by a Newtonian type of
gravitation.

The provided definition is quite broad. It may
refer to:

 - a self contained gas volume or liquid in a
cosmic space. 

 - a gas volume enclosed in some volume in
the Earth gravitational field (a balloon)

- a liquid in container
- a solid body
A special case of interest is the solid body.

From the point of view of the inertial properties
two of its characteristics are mostly important: its
integrity (all atoms a moving together) and its
mass. The latter parameter is proportional to the
quantity of the atomic particles (if neglecting the
mass deficiency in the atom expressed by the nu-
clear binding energy). The expression of the mass
by the quantity of atomic particles appears to be
quite useful approach for transferring the inertial
properties of a single particle to a solid body. At the
same time it becomes apparent that a solid body
may posses a proper (or local) CL space. The pos-
sible existence of such space depends on:

- is the solid body immersed in external grav-
itational field and how strong is it?

- does the solid body possess enough mass
(matter quantity) in order to have the necessary
proper gravitational field?

It is also apparent (and will be confirmed lat-
er) that a macrobody with quite large mass may
contain extended CL space whose Equivalent Sep-
aration Surface is beyond its surface.

A massive macrobody with extended external
CL space appears as astronomical object, defined
later in this chapter. (The main distinctive feature
of the astronomical object (or body) from a macro-
body is that its shape is close to a sphere due to its
large mass).

Inertial interactions for a macrobody. 
In the general case the macrobody is consist-

ed of large number of interconnected atoms or mol-
ecules, moving as a common volume.

EB mdc2=

EIFM cαυ Zmp Nmn EB/c2–+( )=

Au Zmp Nmn+( ) EB/c2–=

EIFM cαAu( )υ=
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From the conclusions in the previous para-
graph it follows, that the force moment of the iner-
tial interaction of macrobody could be regarded as
a sum of the inertial interactions of the involved at-
oms. If ignoring the general relativistic effect, it is
evident, that the force moment of folded nodes in-
side the body will be proportional to the number of
protons and neutrons in one atom and to the
number of atoms in  a unit volume. Taking into ac-
count the general relativistic effect, it is the atomic
mass that determines the inertial interactions.

According to general definition of macro-
body it is necessary to distinguish the two quite dif-
ferent cases: a  volume of gas and a solid
macrobody.

10.4.6.1 Inertial properties of  a gas enclosed in 
a finite volume

The number of atoms (molecules) in unit vol-
ume (for example 1 m3) is strongly dependent on
the pressure and temperature due to the effect of the
Brawnian motion. For conditions of ideal gas this
dependence is given by the equation:

                                            (10.27)
where: P - is a gas pressure, V - is a volume

of the vessel, R is an ideal gas constant, T - is a tem-
perature in [K], n - is a number of .

In case of atmosphere around a planet (or gas
volume around an astronomical object) the volume
is determined by gravitational conditions.

The conclusions in §10.4.5 are fully consist-
ent with the relation between the mass of 1 kmol of
gas substance and the number of atoms (molecules)
given by the Avogadro’s number: 

  [ numbers/kmol]     (10.28)
The gases in the Earth atmosphere could be

regarded as ideal gases. Eq. (10.27) is not very ac-
curate for a temperature close to the absolute zero,
because it takes into account the collision interac-
tions between the molecules (atoms).

10.4.6.2 Solid body
According to the conclusions in §10.4.4 the

force moment (of the folded nodes) in the solid
body will depend on two factors:

- the atomic mass number
- the number of atoms in unit volume (1 m3 in SI)

The first factor is one and a same for a gas or
a solid body. The second one, however, is depend-
able on the crystal structure of the solid substance.
It also may vary between bodies made of different
atoms. This variation is a result of the different spa-
tial configurations of the atomic nuclei. So it is de-
pendable on the number and positions of the
valence protons, as they are involved in  the con-
nections between the atoms in the crystal structure.
There are essential differences also between the
crystal structures  of metals and insulators.

In order to show how much the second factor
influences the force moments, a simple analysis is
made by comparing of similar physical parameters
of two cases of homogeneous matter substances.

Case A. Comparison between silver and gold
                                                       Table 10.3

===========================================
 element        Z        N        Z+N        A         
                                                            (u)       (kg/m3)
-------------------------------------------------------------------------
 Ag              47        61        108      107.87     10.5
 Au              79       118       197      196.97     19.32
-------------------------------------------------------------------------

        

Case B. Comparison between Al and Si.
                                                            Table 10.4
===========================================
 element        Z        N        Z+N        A       
                                                            (u)      (kg/m3)
-------------------------------------------------------------------------
Al                 13       14          27        26.98     2.7
Si                  14       16          30        28.09     2.33
-------------------------------------------------------------------------

        

In Case A: The two elements are quite distant
by their Z number, but they have very similar con-
figurations especially about the valence proton (see
Atomic Nuclear Atlas). So it is reasonable to ex-
pect that they have a similar metallic crystal struc-
ture. This is confirmed by the pretty close ratio
value between their atomic masses and densities.

In Case B: The two elements are distinguish-
able only by one proton and two neutrons. Their
atomic mass ratio, however is quite different than

PV nRT=

kmoles

NA 6.022142 26×10=

ρ 103×

Z+N( )Ag
Z N+( )Au

------------------------- 0.5482= A Ag( )
A Au( )
--------------- 0.54764= ρ Ag( )

ρ Au( )
--------------- 0.54347=

ρ 103×

Z+N( )Al
Z N+( )Si

----------------------- 0.9= A Al( )
A Si( )
-------------- 0.96= ρ Al( )

ρ Si( )
-------------- 1.158=
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their density ratio. Such difference may come only
from the crystal structure. The hadron density in
unit volume for Al is higher, than for Si. This indi-
cates also that the interatomic connections for met-
als and nonmetals are different. The molecular
binding system of Deuterons, described in Chapter
9 should be valid for a solid silicon. But such bind-
ing system, evidently, is not involved in all type of
interatomic connections between Al atoms in the
crystal structure of solid aluminum.

The provided two examples are in good
agreement with the consideration, that the force
moment for a solid body is proportional to the
sum of the volumes of its FOHSs.

Ideal solid body
Definition: A solid body possessing a local

CL space for which the volume of its ESS (see
Fig. 10.2) is equal to its  body volume.

The concept of ideal solid body allows us to
analyse the inertial interactions by a model, accord-
ing to which the whole volume of the ideal solid
body is filled by its own CL space and the external
CL space does not penetrate inside. It might be also
said that the ideal solid body does not possesses
cavities.

Practically such body does not exist. All real
solid bodies contain cavities. (The local CL space
of real solid body is discussed in the next para-
graphs). The definition of ideal solid body, howev-
er, allows to transfer the force moment conditions
of folded nodes from single particle or atom to a
small solid body. The force moment of a homoge-
neous solid body (comprised of one atomic sub-
stance) with mass of 1 kgmol, can be expressed by
multiplying the atomic force moment (given by Eq.
(9.26)) by the Avogadro number:

  [J/kgmol]                (10.29)

where:  - is a mass of 1 kgmol
The force moment of any substance of mass

1 kg is:
   but  , so:

When working in SI system, the inertial force
moment of a body of normal matter, possessing a
mass of 1 kg is given by:

   [J/kg] per 1 kg substance (10.30)

Note: The term normal matter means the
body is composed only of protons, neutrons and
electrons. In latest paragraphs of this chapter it
could be discussed that, “crushed” matter in form
of kaons, may exist in the nucleus of heavy astro-
nomical objects.

While Eq.(10.30) appears referenced to 1 kg
newton’s mass, a solid body of m kg (but still com-
plying to ideal solid body definition) will have an
inertial force moment of

   [J]  referenced to the mass (10.31)

   [J]   referenced to the volume (10.31.a)
                               at constant 
where: V - is the body volume,  - is the den-

sity
The final equations (10.31) and (10.31.a) are

quite simple and convenient for use for not relativ-
istic motion. In relativistic motion the right side
should be multiplied by the relativistic gamma fac-
tor.

The Eq. (10.31) shows one important feature
of the force moment:

The inertial force moment referenced per
one kg of substance is independent from the
atomic and molecular composition of the sub-
stance.

10.4.7 Relation between the inertial force 
moment and first Newton’s law of inertia.

Let demonstrate the relation for the electron
accelerating by a constant force for not relativistic
motion. According to the first law of inertia we
have      

where: F - is the force with a constant value,
me - electron mass  and a is the obtained constant
acceleration.

According to the general equation for the in-
ertial force moment of body with mass m (Eq.
(10.31)) we have                     (10.32)
whose dimensional equivalence is:

                                    (10.33)

If Eq. (10.32) is divided by some specific CL
space parameter with linear space dimension, we
can obtain equation with dimensional equivalence
of  Eq. (10.32). Such specific CL space parameter

EIFM cαNAAu( )υ=

NAAu m=

EIFM cαNAu( )υ= NAu 1=

EIFM cα( )υ=

EIFM cαmυ=

EIFM cαρVυ=
ρ

ρ

F mea=

EIFM cαmeυ=

N m[ ] m
s
----kgm

s
----≡
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is the space-time constant . In the Earth local
space we have . So dividing Eq. (10.32)
by  we get:

  (10.34)

The obtained Eq. (10.34) has the same di-
mensional equivalence as the first Newton’s law of
inertia. The bracket therm  is the obtained ac-
celeration. Eq. (10.34) confirms the validation of
the introduced inertial force moment (for folded
nodes). Its validity for the electron as a single coil
structure is propagated automatically for proton
and neutron.

10.4.8 CL space inside of real body
Note: It must be kept in mind that the concept of
the Local CL space was introduced for conven-
ience. In fact all kind of bodies (comprised of
atomic matter) are immersed in the galactic CL
space. 

Two concepts will be briefly discussed
- frame reference
- CL space continuity in one specific case 

10.4.8.1 Frame reference
Case A: A massive body possessing a local grav-
itational field, which is larger that any external
gravitational field in any point of its local CL
space.
The extent of the local field around the protons and
neutrons depends on the amounts of accumulated
atoms.  The local space of a massive real body will
be a three dimensional manifold, but still continu-
ous. All FOHSs will look as a three dimensional
grid immersed in the local CL space of the body. If
the body possesses microcavities, they are still part
of the body CL space. An example of such massive
body is a planet in a solar system. The body is char-
acterized with the following important features:
•  when a massive body is in a relative motion 

in respect to external gravitational field, the 
own atoms and molecules are carried by the 
local field of its proper CL space and do not 
feel the motion  

Case B. A massive body which local gravitation-
al field is smaller than the external gravitational
filed in any points of its volume.

In this case the CL space of the external grav-
itational field is a three dimensional manifold pen-
etrating into the atomic matter of the body down to
the level of helical structures. The inertial interac-
tions of atoms and molecules in this case when the
body is in motion are different:
•  when the body is in relative motion in 

respect to external gravitational field, the 
own atoms and molecules feel the motion

Example: moving objects in earth gravita-
tional field: thrown stone, car, train, aeroplane,
rocket, satellite.

10.4.8.2 Continuity of the penetrated CL space
The concept of continuity of penetrating CL

space is valid, when the local gravitational field in
any point of the body volume is smaller than the
gravitational field of external more massive body.
The most important feature is:
• The penetrating CL space inside the solid 

body is a continuous three dimensional man-
ifold

Example: any body in Earth gravitational
field whose mass may range from single crystal, to
large iceberg, artificial satellite and so on. The
Moon, however, is not included in this category.

 The concept of continuity could be demon-
strated by the example of two flywheels, as shown
in Fig. 10.4. The first one is solid, while the second
one is hollow inside.

 

                                Fig. 10.4
               Two flywheels and their local fields

The solid flywheel a has a larger moment of
inertia than flywheel b. Let consider that the fly-
wheel b. contains some small parts inside the hol-
low volume. If this volume is vacuumized and

λSPM
λSPM λc=

λc

EIMF
λc

------------ αme
c
λc
-----υ αmeνcυ αme

υ
tc
--- me

υ
tc/α
---------- 

 = = = =

υ
tc/α
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there is not any friction forces between the internal
walls and the small parts, they will be always at-
tracted by the Earth gravitational field, independ-
ently of the motion conditions of the flywheel. If
applying a linear acceleration of the flywheel b. in
direction coinciding with the rotational axis, the
small parts in the internal inertial hollow volume
also feels the acceleration. The inertial properties
of the small parts also does not depend of the thick-
ness and matter density of the walls. So they exhib-
it the same adequate inertial properties as the solid
volume. All these considerations lead to a conclu-
sion, that the penetrating external CL space is con-
tinuous. This is so because the volume of all
FOHSs in the atom is much smaller than the atomic
nuclear volume. The interatomic distances are also
larger than the atomic nucleus even for most dens
metals (for example gold, lead, platinum etc.). The
element Ar possesses one of the most dens atomic
nucleus (that is also part of other heavy nuclei). Let
calculate the ratio between the envelop volume of
Ar nucleus and the volume of all of its FOHSs.
The envelope volume radius according to Michi-
gan Institute technology data is 0.88 A. The vol-
ume of all FOHSs in a single proton (neutron) is

. Then the volume ratio for Ar
atom is

 Then the similar volume ratio for any metal
could  exceed few hundred thousands. In such con-
ditions we may apply the concept of a free pro-
ton (neutron) for a solid body. The folding and
deviation of the CL space nodes in such case is
caused by the obstruction of their straight relative
motion by FOHSs volumes.  This concept is in
agreement with the application of Avogadro theory
in the case of solid state of the matter.

The presented concept of small body (case
B) excludes the possibility of possession of proper
CL space. In fact, a small local space may exist
around any FOHS, but it is not larger enough to fill
even the gaps between the external coils of the pro-
ton (neutron).

10.5 Using the concept of the local CL space 
and ESS for massive objects 
For a massive body with a detectable gravitational
field it is convenient to use the concept of the local

CL space with its presentation as an Equivalent
Separation Surface (ESS) defined in §10.3.1.

10.5.1 Relation between the gravitational field 
and the local CL space

A local (proper) CL space by definition is
possible only around a matter. In a normal state this
matter is composed of helical structures. The shape
of the local field of a single proton could be an en-
velope around all of its FOHSs without closing the
gaps between their second order windings. This is
in agreement with the concept of continuous three
dimensional manifold presented in §10.4.8.

Accumulation of large number of atoms and
molecules may form, for example, a spherical body
whose local field is also a sphere but its ESS is ex-
tended beyond the volume of the solid body.  So we
need to define a massive real solid body from a
point of view of a local CL space concept:

A massive real solid body is a such object
for which the ESS of the local CL space is ex-
tended beyond its solid surface. The continuous
three dimensional manifold in this case could be
considered as occupied by the own (equivalent)
CL space. 

In the process of real body building from at-
oms and molecules the local gravitational field also
arises and in some point it becomes detectable. So
we may formulate the following general definition
of a local CL space.

(A) If a real body has domains for which
the local gravitation field exceeds any external
gravitational field, it possesses a local CL space.

It is evident from the above formulation, that
the possession of local CL field depends on number
of conditions:

- the mass of the body
- the mass of the external (more massive)

body providing the external gravitational field
- the distance between the body of considera-

tion and the external more massive one
- the matter density of the body

10.5.2 Local CL space of large astronomical 
object

In order to analyse and explain some inertial
phenomena in astronomical scale we must define a
criterion for considering the object as astronomical.

π Rc rp+( )2Lpc[ ]/71.72

volume  ratio 65110=
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For this purpose the following criterion could be
used:

A real body could be considered as astro-
nomical object if posessing a detectable gravita-
tional filed, extended beyond its solid surface or
self contained gas volume

According to above criterion, large astro-
nomical bodies are: stars, planets, planet’s satel-
lites (moons) and asteroids.

10.5.3  Concept of separation surface between 
local CL spaces

Body with small gravitational field  is usu-
ally immersed in another gravitational field of a
larger body. Then if the smaller body possesses
own CL space it is immersed in the CL space of the
larger body. Even a single body with a local CL
space quite distant from other bodies is still im-
mersed in the Global CL space of the home  galaxy. 

For single astronomical body (as idealistic
case) with spherical shape the ESS of its local CL
space will be also a spherical. In a general case the
spin rotation could be considered as a normal state.
It is reasonable to accept, that the local CL space
will rotate with a same angular velocity. Then for a
case of spin rotation the following boundary condi-
tions are valide: 

(a) The radius of the local field becomes lim-
ited by the light velocity at the boundary surface.
Then the separation surface becomes defined by
the ideal separation radius Rs, satisfying the condi-
tion:

                                               (10.35)
where:  -is the angular velocity and c - is the

light velocity
(b) ZPE threshold cut: The radius of the local

field becomes limited by the Zero point energy of
the free (galaxy) space playing a role of a thresh-
old. 

In a real world it is not possible to find a case
for a single macrobody, where there is not a second
body in the range of the ideal separation radius of
the first one. This also means, that the second body
affects the size of the CL space of the first one by
its gravitational field. Conclusion:

In the real world the ideal case of ESS of a
single body is disturbed by another body with
local gravitational field (possessing a local CL

space) in the range of the separation radius de-
fined by the ZPE threshold cut.

10.5.4 Two bodies at rest in respect to the upper 
level CL space - idealised condition

 In this case (possible also in idealised condi-
tions) we consider only two massive bodies in the
global (galactic) CL space, both in rest in respect to
this CL space.  Both bodies are in gravitational in-
teraction, but we may consider an initial moment
after they has been hold in rest. In such conditions
the inertial force moment could not be defined and
only newtonian gravitational forces are considered.
If the distance between both bodies is smaller than
the radius restricted by the ZPE threshold (consid-
ered in the previous paragraph), both bodies will
have a common ESS, for every point of which the
Newtonian gravitational forces will be equal. If one
of the bodies is much less massive, its ESS will
have a shape of an egg immersed inside of the ESS
of the other (more massive one).

If trying to analyse the folded nodes of the
more massive body, penetrated in the CL space of
less massive one, a problem appears: the folded
nodes are not in motion! This is in conflict with the
inertial definition and even the partial pressure
could not be defined. This is another reason that
make  the case idealistic, so the two bodies could
not be at fixed distance.

10.5.5 Two bodies with a constant distance 
between them but in a common motion refer-
enced to the upper level CL space.

This is a realistic case in which both bodies
will rotate around a common centre, whose posi-
tion depends on their  mass ratio. Therefore the def-
inition of local CL spaces and ESS is reasonable
and could be used for a motion analysis.  In a gen-
eral case when both bodies are with different mass-
es and close enough so their local CL spaces could
not be limited by the ZPE threshold, the ESS has a
form of egg and encloses the less massive body.
This case could be applied for a planet in a solar
system. The separation surface is defined by the
condition that the two vectors of the gravitational
forces in any point of the system (not taking into
account the centripetal forces) have equal magni-
tudes. For a planet in a solar system the condition

Rsω c=
ω
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defining the separation surface is expressed by Eq.
(10.35.a) (based on the Newton’s gravitational
law).

                                     (10.35.a)

where: MS is the solar mass, MP is the plane-
tary mass, d - is the distance between them, rs is the
distance of the separation surface from the planet.

10.5.6 Two bodies with changeable distance 
between them.

The two bodies will have elliptical orbits
around a common centre of rotation. The CL space
of the less massive body is always immersed in the
CL space of the more massive one. The ESS en-
closing the less massive body will have a shape of
egg as in the previously discussed cases, but its size
and shape will vary with the distance change be-
tween them.

10.6 Total energy balance of moving macro-
body

In the previous paragraphs, the force moment
of the folded nodes was discussed for a single par-
ticle, for an atom or for an ideal solid body. Now
we need to examine the validity of Eq. (10.31) for
real solid body.

Let accepting initially that: Eq. (10.31) is
valide for a large body and even astronomical ob-
ject. In order to find out is this true or not we will
analyse the relation between gravitational and iner-
tial interactions of a real body in different gravita-
tional fields. For this purpose some data  about the
solar system planets (and some of their moons) will
be used.

10.6.1 Force moment of real body in a free fall 
motion

Let analyse how the energy of a free fall body
with mass m near the surface of an astronomical
body (planet or moon) is changing per unit time by
comparing its motion energy and its gravitational
potential. To simplify the analysis we will consider
that the planet has a perfectly spherical shape, so
the centre of mass coincides with its geometrical
centre.  Let the body is initially kept in rest near the
planets surface and at moment zero it is released for

a free fall motion. By using the definition of inertial
force moment (for folded nodes)  we
may find the work for deviation of the folding
nodes for a small time interval. The force moment
is proportional to the velocity change for a unit
time interval for any moment of the motion. For a
motion range much smaller than the planet radius,
the gravitational acceleration could be considered
as a constant. Then the change of the force moment
is a constant for a small time interval  in any mo-
ment of the motion. At initial time moment of zero,
the velocity is zero, so the force moment is also ze-
ro. At the end of the time interval  the velocity is
equal to  and the force moment is , where
g is the gravitational acceleration. Then the change
of the force moment of the real body with mass m
per unit time is:

    [J/s]                             (10.36)
Let the planet is characterised by the follow-

ing features:
- perfect spherical shape
- constant or linear change of the solid matter

density with distance from the centre
- all the mass is enclosed below the solid sur-

face of the planet (the mass of atmosphere is ig-
nored)

- ignoring the free fall influence from the
planet sideral rotation, when the body is closed to
the planet surface (practically valid for all planets
of the solar system)

The gravitational potential at the same level
(considered near the surface of the planet) is given
by:

   [J]                                   (10.37)

where: G - is the gravitational constant, M - the
mass of the planet, R - a spherical radius of the
planet

The gravity at the level defined by R is:

                                       (10.38)

Ignoring the centrifugal force, according to
the above mentioned consideration and using Eq.
(10.36), we obtain the expression for the ratio

:

                                  (10.39)
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Let define the above ratio as a factor KE.
                                    (10.39.a)

Note: The change of force moment  in
Eq. (10.39) is a parameter of a real small body in
gravitational field of astronomical object. It should
not be confused with  a force moment of the mas-
sive astronomical object.

Eq. (10.39)  leads to some interesting results: 
(a) From a pure theoretical point of view
 Let estimate Eq. (10.39) for a time interval

 equal to the Compton time tc, which inverse of
the Compton frequency, . We obtain:

 (m)
Amazingly, this value is quite close to twice

the small radius of the electron structure, re, which
was derived in Chapter 3.

 (m)
Conclusion: 

• The obtained coincidence confirms the envi-
sioned concept that CL nodes partly folds 
and deviates from the moving through space 
helical structures (possessing impenetrable 
for CL nodes internal RL lattice). 

The above result is valide for all negative el-
ementary particles since they have a similar FOHS
as the electron. It is valid also for the positive par-
ticles including the proton’s (neutrons’s) external
shell) using the same correction factor as for the
mass equation for positive helical structures (or
particles).

(b) From a practical point of view of a sys-
tem comprised of real astronomical objects:

Eq. (10.39) is very useful theoretical expres-
sion that could be tested for the planets and moons
from the solar system. The parameters  and

 can be separately calculated by the data
available for them. If the astronomical body (planet
or moon) does not have a perfect spherical shape
the radius R could be replaced by a volumetric ra-
dius RV. One important feature of the ratio given by
Eq. (10.39) is that the planet mass is eliminated.
However it participates in the separate parameters

 and .The parameter KE could be ploted
against the planetary volumetric volume for con-
venience, because it is fully defined by the plane-
tary radius. The planets, however, possesses
additional sideral rotation and its possible contribu-
tion should be taken into account. 

For astronomical body with significant spin
rotation the falling body near the solid surface will
get rotational energy that should decrease . If as-
suming that an unit mass of atmosphere (1 kg) is
uniformly distributed as a thin shell at radius RV,
its rotational energy is

                                           (10.40)

where:  

and  - is the angular velocity determined by
the sideral period

Then for a real astronomical  body (planet or
moon) the ratio kE becomes:

                                        (8.41)

The ratio (8.41) in a measurement system unit
of SI is estimated for number of planets and moons
in the solar system, for which the volumetric radius
of the solid surface is known. This condition ex-
cludes the largest planets Jupiter, Saturn, Uran and
Neptun, for which the radius is estimated at 1 mbar
pressure. But all other planets, most of the moons
and one asteroid with spherical shape are included.
All data are taken from NASA fact data sheets
about the planets and moons of the solar system:
(http://nssdc.gsfc.nasa.gov/planetary/planetact.html).

For estimation of , the surface gravity,
from the “fact data sheet” is used if it is available.
If not available, it is calculated by Eq. (10.38).
Some of the necessary data and the calculated pa-
rameters are given in Table 10.4. The rotational en-
ergy (for 1kg atmosphere) calculated by Eq.
(10.40) for the planets of the solar system is quite
small, so it is not given in the table. For example:
ER parameter (from the sideral rotation) for Mars
and Earth is respectively 1.925E4 and 7.194E4,
while UG is respectively 12.63E6 and 6.256E6. So
ER for this two planets are respectively 0.15% and
1.14% of UG  and could be ignored. For other plan-
ets the ER contributions are much smaller, so they
are ignored. Then with a quite good approximation,
the Eq. (10.42) could be accepted to be valid for the
planets of the solar system:

                                          (10.42)

The plot of KE versus the volumetric radius
RV  is shown in Fig. 10.5.
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The planets and moons for which the surface
gravity is provided by the fact data sheets are
drawn by green (or gray) points. For other objects
(mostly moons) the surface gravity is calculated by
Eq. (10.38). All planets and moons lie very closely
to the theoretical line given by Eq. (10.39).  

   Planet  (moon) data                            Table 10.4
===========================================
No  Planet     M x 1023     Rv         g        Tsid          

      (moon)     (kg)         (km)     (m2/s)    (hr)     
-----------------------------------------------------------------------
1. Nereid     0.0002        170                                      0.077
2. Vesta       0.000301    265                                      0.121
3. Umbriel    0.0117       584.7                                   0.267
4. Charon     0.019         593                                      0.27
5. Oberon     0.0301       761.4                                   0.348
6. Titania      0.0352       788.9                                   0.36
7. Pluto        0.125          1195                  153.3         0.546
8. Triton       0.2147       1352.6                 141          0.618
9. Europa     0.4797        1569                   85.2         0.706
10. Moon       0.7349      1737.4   1.62      655.7       0.796
11. Io             0.8933       1815                   42.48        0.837
12. Calisto      1.076       2403                   400.5        1.1
13. Titan         1.345       2575                                    1.173

14. Ganimede  1.482       2634                   171.6       1.21
15. Mercury   3.302        2439.7    3.7       1407         1.11
16. Mars        6.418         3390       3.69     24.62        1.562
17. Venus       48.685      6051.8    8.87     5832         2.766
18. Earth        59.736      6371        9.78      23.934      2.92
---------------------------------------------------------------------

Note: The surface gravity from the fact sheets only are
shown. 

The rotational energy ER (for 1 kg mass) is
quite small and not listed in Table 10.4.The posi-
tion of planet (moon) is numbered according to   No
given in Table 10.4.   

From the analysis of the ploted data, the fol-
lowing conclusions are apparent:

(a) The planets and moons generally align
well to the theoretical curve given by Eq. (10.39)

(b) The planets and moons for which more
experimental data are available exhibit some
small deviation from the theoretical curve.  The
reason for this could be the difference between
their mean density and the theoretical mean
density of the small body used as a reference
(having a mass of 1 kg).

10.6.2 Anomalous position of Mercury in the 
plot of the ratio kE as a function of mean radius

The planets (moons) in Tables 10.4 and their
assigned numbers follows the trend of mass in-
crease. From the data points ploted in Fig. 10.5,
however, we see that Mercury (point number 15)
does not follows the trend but takes a reversal di-
rection. In order to study this anomaly we analyse
the trend of the matter density of astronomical
body, when a large mass is accumulated. For this

reason we will analyse the trend of the planetary
(and moon’s) masses in function of their volumes.
Fig. 10.6 shows the trend in full scale, while Fig.
(10.7) shows a portion of the trend with increased
vertical resolution.

kE

Fig. 10.5
Copyright © 2001, by S. Sarg                                                      10-23



BSM  Chapter 10.   Time, Inertia and Gravitation                                                            Second edition, 2005
The plots in Fig. 10.6 and 10.7 clearly show
that the common trend of matter density breaks into
two trends. The first trend for planets (moons) with
smaller mass ends up at Mercury. The second trend
begins with Calisto and continues for the larger
planets (for which the solid surface volume is
known).

Fig. 10.7. Initial section of the plot shown in Fig.
10.6 with better scale resolution, showing the break zone of
the trend

 
The break of the common trend appears in the

region close to  . The object 15
(Mercury) is still in the strong gravitational field of
the Sun.

The break of the trend has some similarity
with the mass efficiency (binding energy) in atomic
nuclei in function of Z number. The possible expla-
nation of the observed effect is the following:

Due to the enormous gravitational pres-
sure the structure of the protons and neutrons in
the central zone may brake. The internal  pions
may convert to straight structures - kaons get-
ting alignment to the central kaon. The obtain
bundle of kaons in such enormous pressure
might be stable. They may shrink additionally
the internal CL space, providing the same effect
of mass deficiency as in the atomic nuclei. At the
same time the internal RL(T)s of all kaons ap-
pear axially aligned. They can modulate strong-
ly the external CL space, providing an excellent
conditions for a strong magnetic field.

The above  explanation is additionally dis-
cussed in the magnetic field hypothesis for the
planets proposed in §10.14 and for the stars (dis-
cussed in chapter 12). 

The suggested explanation  may also give an
answer, why Mercury overpasses the theoretical
break zone. This planet is very close to the Sun and
exhibit pulling forces, that are additionally con-
stantly changing due to the elliptical orbit. In such
condition the gravitational pressure in the central
zone of the planet is decreased. Additional factor
may be the continuously changed conditions in re-
spect to the strong magnetic field of the Sun.

The theoretical threshold separates the com-
mon trend into two zones: a zone above, and a zone
below the threshold value VCR, which could be
considered as an average between the volume of
points 15 and 16.

  (kg)                             (10.47)

Fig. 10.6

VCR 5.2 10×10   (km3 )=

MCR 2.189 23×10≈
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The corresponding critical matter density for
this case (average for the whole volume) is:

                                    (10.47.a)

10.6.2.A. Theoretical concept for dynamical 
equilibrium of moving astronomical object in 
CL space.

Let a planet with a mass MP is in a stable cir-
cular orbit around a star with mass MS. Then the
gravitational attraction is equal to the centripetal
acceleration: . The tangential ve-
locity is 

                , where r is a distance

The energy ratio between the inertial force
moment (of folded nodes) and the kinetic energy of
the planet is

Rising in quadratures we get:

                       (10.47)

where:          (10.48)

The obtained theoretical Eq. (10.47) is very
useful. The left side is a linear function of the dis-
tance r. The constant CE is obtained by using the
solar mass value

    (kg) 
The planetary motion in the solar system is

quite stable. This fact is based on accurate astro-
nomical observations for many years. Then some
dynamical equilibrium should exist. Using the
golden rule of energy conservation we may try to
express some of the parameters by energy ratio and
observe the obtained trend. Such opportunity is
provided by the theoretical expression (10.47).

The expression (10.47) could be verified by
the planetary data of the solar system. Using the
planetary fact sheets data the calculation of 
and     is a straight forward process. Most of the
planet orbits exhibit quite small orbital eccentrici-

ty. For planets with larger eccentricity the energy
EK is approximately estimated by using the mean
orbital velocity. 

The input data from the planetary fact sheets
are given in Table 10.5. The mean distance of every
planet from the Sun is given as d in astronomical
units (1 au = 1.496E11 (m) is the  mean distance
between Earth and Sun). The distance d corre-
sponds to the radius r in Eq. (10.47). 

Planetary data                                             Table 10.5
===========================================
 No                   MP            (mean)    d (mean)    (mean)

         x 1023 [kg]     [km/sec]       [au]        [kg/m3]
-----------------------------------------------------------------------
1 Mercury       3.302            47.87          0.387       5427
2 Venus           48.685           35.02          0.723       5243
3 Earth             59.736           29.78           1             5515
4 Mars             6.418             24.13          1.524       3933
5 Jupiter         1431280          13.07          5.203       1326
6 Saturn           5684.6            9.69           9.539       687.26
7 Uranus           868.3             6.81          19.18      1270
8 Neptune        1024.3            5.43          30.06      1638
9 Pluto             0.125              4.72          39.53      1750
-------------------------------------------------------------------------

The calculated parameters EIMF and EK show
quite large variation for different planets (a few or-
ders), although the square values of their ratio ex-
hibits a perfectly linear dependence of mean
distance from the Sun. The plot of this ratio is
shown in Fig. 10.8.

                             Fig. 10.8
Square value of energy ratio for the planets 
of the solar system in function of their mean
distance from the Sun

The plot of Fig. 10.8 shows excellent align-
ment of the planets along the theoretical line. By
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fitting to a robust straight line the experimental val-
ue of the slop is obtained. Its value is .
The difference between this value and  the theoret-
ical one given by Eq. (10.48) is only 0.06%.

10.6.3 Folding/unfolding energy of CL nodes 
for astronomical body with external CL space

Radius of equivalent separation surface
Folding/unfolding energy of CL nodes for

atomic particles and atoms is borrowed from the
CL space, so the energy spent in the entrance is
equal to the energy received back in the exit. Let
find out is this principle valid for astronomical ob-
ject.  The plot given in Fig. 10.8 shows a linear de-
pendence of the square value of the energy ratio
EIMF /EK in function of orbital radius, but one have
to keep in mind, that the area of the ESS depends
on the distance from the Sun. The ESS has a shape
of egg but for  and larger orbital radii it
tends to approach the spherical shape. Therefore,
we may replace the shape of the egg by a sphere
with equivalent radius equal to the average value of
larger and smaller radii (of the egg shape). Apply-
ing the definition for ESS according to Eq.
(10.35.a), these two radii can be obtained. The av-
erage value between both radii (for egg shape) pro-
vides the radius of the equivalent sphere,
presenting the ESS.

                                                  (10.49)

where: MS is a solar mass, M is a planet mass,
d - is an average distance from the Sun, rs - is the
equivalent sphere radius of ESS.

We will express the inertial interactions by
the energy interactions of the folding/unfolding
process of CL nodes deflected by the helical struc-
tures of all matter involved in the body under con-
sideration. The physical parameter of the body
involved in this process is its total mass. 

Assumption: Let assume that the folding/un-
folding energy referenced per 1 kg of newton’s
mass is equal to the intrinsic forces work, obeying
the inverse cubic law, but expressed by the work
carrying this mass (1 kg) from distance d to infini-
ty. This is an estimation of the intrinsic energy with
its inverse cubic law but expressed by the newton’s
gravitational parameters (G and MS).

   (J)                (10.50)

Now considering that the work expressed by
Eq. (10.50) is relevant for the unit surface area of 1
m2, we may express the total separation work by
multiplying the area of the ESS by this value. 

                                    (10.51)
Let use the estimated value of the critical

mass MCR. By substituting the parameters  given
by Eq. (10.50) into (10.51) we obtain  ES for a
small astronomical object with mass approaching
MCR.

   [J/kg]     (10.52)

The energy ES is intrinsic energy involved in
folding/unfolding process. It is borrowed from the
CL space, so it could be considered as a reactive
energy. The distance parameter in Eq. (10.52) is
eliminated, but we have neglected  the general rel-
ativity effect of the CL space shrunk (space curva-
ture) around the massive body. 

Eq. (10.52) could be checked by experimen-
tal  planetary data but their parameters should be
properly normalized.  In order to satisfy the trend
link to the atomic particles and atoms (the first
trend of the plot in Fig. 10.7) the planetary mass
should be divided by the first critical mass MCR1,
and the matter density must be normalised to the
critical density. The properly normalized expres-
sion is:

                                   (10.53)

where   - is a normalised “mass” of the
astronomical body, given by the expression:

                                    (10.54)

where:  - is a planetary average density, 
- is a critical matter density given by Eq. (10.47.a). 

Note: M* according to Eq. (10.54) is a di-
mensionsless parameter.

Table 10.6 shows the value of some parame-
ters involved in ES and the calculated value of ESn
for the planets of the solar system. While the shown
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parameters exhibit quite large variation in a range
of few orders, the variation of ESn between differ-
ent planets is quite smaller, ranging from 0.724E14
to 2.245E1

Some of involved parameters and ESn
in function of distance                                          Table 10.6
===========================================
 No Planet        rs                                                ESn
                        [m]           [kg/m3]             [J/m2]               
-------------------------------------------------------------------------
1  Mercury   2.3589E7      5427             0.0198             8.44E13
2  Venus      1.6922E8       5243             5.672E-3         8.736E13
3  Earth       2.5926E8       5515             2.965E-3         8.306E13
4  Mars        1.2951E8       3933             1.276E-3          1.165E13
5  Jupiter     2.4071E10     1326             1.095E-4          3.461E14
6 Saturn       2.4132E10     687.26           3.258E-5         6.669E14
7  Uran       1.8959E10     1270              8.060E-6         3.607E14
8  Neptun   3.2273E10     1638              3.2814E-6       2.797E14
9  Pluto       4.688E8         1750              1.8975E-6       2.617E14
-----------------------------------------------------------------------

We see that ESn is close to the theoretical val-
ue ES given by Eq. (10.52) , but not exactly equal.
ESn exhibits also some variation from the distance
between the planet and Sun. The obtained discrep-
ancy from the theoretical value might be a result of
ignored General relativity effect of space curvature
(CL space shrinkage). Such conclusion is in agree-
ment with the analysis, provided in the next para-
graph.

 10.6.3.A. Signature of General relativity and 
folding nodes from the Global CL space.

Let use Eq. (10.47) in a form

 , where 

This equation was derived by neglecting the
General relativity effect and the factor CE is ob-
tained as a constant. The General relativity, howev-
er, is an effect characterized with increased
stiffness of CL space around a massive astronomi-
cal object. In Chapter 2 it was shown that a very
small change of the CL node distance could cause
increase of CL space stiffness due to the inverse cu-
bic IG law. This will affects the node resonance
frequency, the  SPM frequency and consequently
the light velocity. The index of refraction in the lo-
cal CL space of heavy astronomical object is slight-
ly higher than the free CL space. The parameter 
is a constant for the whole galaxy CL space. The

question is about G and MS. The Newton’s gravita-
tion is propagated by the IG(CP) forces and one
may expect that it is also affected.  The theoretical
analysis of this issue by the physical constants is
difficult because they are interdependent in CL
space environment. Although we may investigate
the variation of the experimentally calculated
value of this factor by the planetary data. 

For this reason we express the calculated
equivalent parameter CE* by the expression:

                                             (10.55)

where:  - is the mean distance of the
planet from  Sun

The plot of Eq. (10.55) in function of distance
from the Sun is shown in Fig. 10.9.

                            Fig. 10.9

Analysing the folding/unfolding energy in
&10.6.3 we found that ESn is distinguished from
the constant theoretical value given by Eq. (10.47).
But the theoretical Eq. (10.46) does not take into
account the General Relativity effect of a space
curvature. Fig. 10.10 shows a plot of fold/unfold
energy, calculated by the planetary data (see Table
10.6).

                             Fig. 10.10
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The following planetary data has been used:
- for KE plot: - planetary mass, orbital veloc-

ity, distance  from the Sun
- for ESn plot: - planetary mass, planetary

density, distance from the Sun
If connecting the points of the plots if Fig.

10.9 and 10.10  we see that they posses a similar
trends, but inverted.

First conclusion: The similarity between
both plots shows a strong correlation between the
orbital velocity and the mean planetary density.
But what could be the physical phenomena staying
behind such connection? The possible answer is:
The strong correlation could be provided by the
folded nodes from the Global CL space - the
Milky way. They pass through all astronomical
bodies of the solar system, including all macrobod-
ies they are consisted of, in a scale down to the  lev-
el of protons and neutrons and even inside of their
external shell (between the helical structures of the
internal pions and kaon).

 Second conclusion:  The change of  the ex-
perimentally determined CE* is a signature of Gen-
eral relativity effect, caused by the large solar
mass.

Third conclusion:  The common trend, ap-
parent in both plots, could  not  be caused by a con-
tinuous variation of single parameter. Variations of
two parameters are obviously involved. From the
theoretical expression of CE it is evident, that the
parameters , c, G and MS are involved.  is a
prism parameter, so it is a constant for the whole
Milky way galaxy in any conditions. The trend
from point 6 to point 8 has a quadratic shape and
matches the light velocity dependence on the dis-
tance in a strong gravitational field. The trend from
point 1 to point 4 in Fig. 10.10 is contributed by the
parameter  estimated by Eq. (10.50) and in-
volved in (10.51). This parameter is related to the
product . It is difficult to determine which  of
both parameters of this product is affected. The
planetary mechanics allows estimation of the prod-
uct   with much better accuracy than the in-
volved separate parameters. In a similar way the
product , where ME is the
Earth mass is known with better accuracy than the
separate components.

Fourth conclusion: The planet Saturn (point
4) is in the break point between the both curve

trends. This appears in both plots. The special po-
sition of this planet may have relation with some of
its specific features:

- the lowest mean matter density of Saturn in
comparison to other planets

- coincidence between the polar axis and
magnetic dipole axes

- well defined planetary ring with Cassini
gaps

- satellites with orbital period equal to sideral
one

The orientation of the Sun and planetary
magnetic axes in respect to the velocity vector of
the solar system motion in the Milky way is addi-
tionally discussed in later in relation with the for-
mulated Feromagnetic hypothesis.

10.6.4 Some theoretical aspects of the solar sys-
tem motion in the global CL space

The motion of the solar system around the
Milky way centre provides the necessary folded
node motion for all bodies in the system. We may
conclude that:  the inertial interactions and the
total dynamical equilibrium is defined for the
total solar system. 

In the previous analysis we found that using
the critical mass  provides theoretical expressions,
that could be verified by observational data. Let
considering a single astronomical body with criti-
cal Mass MCR2 moving in the global space with the
optimal velocity . Then its kinetic energy is:

              (10.57)

The total energy from the orbital rotation of
all planets of the solar system is: 

The ratio between both energies is:
                                  (10.57.a)

The total kinetic energy from the planets is
about 83% of the theoretical one estimated by Eq.
(10.56) but the rotational energies of all moons and
asteroids are not included. 

The close value of the above ratio to unity
might serve as a criterion for long term stability of
the solar system. These feature is a subject for dis-
cussion in many international workshops.
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