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2.11 Light velocity in CL space

2.11.1 Energy balance between CP and TP com-
ponents of the NRM vector of CL node

When two systems of matter are involved in
a common oscillation, the time duration of the os-
cillation process is very dependent of their ability
to exchange equal energy momentum. In a com-
mon oscillation system, we may distinguish differ-
ent subsystems by their interactions, even if they
look physically inseparable. In such aspect we may
provide analysis of CL node oscillations, as a proc-
ess in which the following two subsystems are in-
volved:

- Central Part (CP) of the prisms.
- Twisted Part (TP) of the prisms.
Now let applying this kind of separation to

the CL nodes assuming that the prisms properties
of CP and TP IG interactions are transferred to the
CL node properties. Then we may assigned the
mentioned properties to the NRM(CP) vector and
NRM(TP) vector, respectively.  Let to find what
are the main distinguishing properties of these two
vectors.

From the previously discussed prisms to
prisms interactions, (more detailed analysis in
Chapter 12) we know, that, the CP of the prism ex-
hibits a low inertial factor, while the TP has a high-
er one. In the node oscillations, the CP is involved
mostly in parallel motions, while the TP in rota-
tional motions. If we consider the complex motion,
of which the two system is involved, we may ex-
pect, that the total interaction factor of the TP is
larger than the total interaction factor of CP. How-
ever, the volume of the TP is about 10% of the total
volume (for the twisted prism model). Then we
may expect that the following balance is relevant
for a CL space domain:

[Vn(CP)] x [Fn(CP)] = [[Vn(TP)] x [Fn(TP)]
(2.24A

where: Vn - is the node intrinsic matter vol-
ume of the corresponding part

             Fn - is the node inertial factor of the
corresponding part

The above relation is only a guess, that is dif-
ficult to be proved. However its logically possible
existence may provide a key for understanding the
stability of the self sustained cosmic lattice. For

right and left handed prisms with defined dimen-
sions the relation (2.24A) may be fulfilled at de-
fined node distance.

Another distinguishing feature between CP
and TP interactions is the angular momentum of
the oscillating node.

The NRM MQ has four bumps, indicating the
directions of increased linear momenta. These mo-
menta are same for the neighbouring right and left
handed nodes. 

If considering the linear momenta of
NRM(CP) MQ along the positive and negative di-
rection of any axis passing through the central
point of MEQ, they are equal in the case of:

- the equivalent diametrically opposite mo-
tions during the resonance cycle

- the right and left handed nodes.
If considering the linear momenta of

NRM(TP) MQ along the positive and direction of
a similar way defined axis, they are different for the
cases of:

- the equivalent diametrically opposite mo-
tions during the resonance cycle 

- right handed and left handed nodes
If considering the EQ nodes, the momentum

magnitudes in the orthogonal axes are affected, but
the NRM(CP) and NRM(TP) have similar features
as for the MQ nodes.

In domains of MQ nodes, the above men-
tioned features contribute to the formation of mag-
netic protodomains. In domains of EQ nodes, the
above mentioned features contribute to the propa-
gation of EM waves. In this case the momentum
possessed by EQs appears as excess momentum.
The IG forces acting on the node in such conditions
are not conservative and the excess momentum is
propagated by abcd axes of the CL nodes, which
are interconnected.

While the CP component of NRM vector is
hidden for electrical and magnetic property, it is
not hidden for the inertial and gravitational mass
properties of the matter. It is involved in the relativ-
istic increase of the body mass, when approaching
the light velocity This tissue is discussed in Chap-
ter 10.

We may conclude that:
• The electrical,  magnetic, and electromagnetic 

fields in CL space are contributed by the inter-
actions in which the twisted part of the prisms 
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are involved. The central parts of the prisms 
support the CL structure integrity and its fea-
tures are hidden for these fields.

• A stationary EQ node involved in a quantum 
wave is not able to keep the excess angular 
momentum.

• The excess node momentum is propagated  as 
EM field  due to the  not conservative force 
conditions. The energy is carried by the TP type 
of IG interactions.

• The central part of the prisms is directly 
involved in the gravitational and inertial mass 
property of the matter.

2.11.2 Momentum propagation in the quantum 
wave
2.11.2.1 Excess node energy and corresponding
momentum

Let accepting that the CL node has inertial
mass. Then we may provide a simplified analysis
of the CL node dynamics, regarding it as a rotating
mass point around a fixed point, connected to it by
massless rod. For dynamics involving operation of
whole cycles of NRM the full cycle trace could be
replaced by equivalent circle. Then the angular mo-
mentum of the oscillating NRM vector for MQ
node is given by Eq. (2.25).

                                       (2.25)
  where:  - is the node angular  momentum

at the resonance frequency.;  is the intrinsic iner-
tial mass of the oscillating node;     is the reso-
nance frequency; 

r   - is the equivalent radius of the node trace
per one resonance cycle

The inertial mass , could be regarded as an
average value of the intrinsic inertial mass of quite
large number of MQ type of nodes. In such case it
obtains very accurate value, depending only of the
node distance. Consequently  is a constant for
a steady state CL space.

 When all CL nodes from a space domain
have a normal ZPE, their angular momentum is
constant. We may call it a normal angular momen-
tum. Such type of node may be included only in
MQ nodes of a quantum wave, but not in the EQ
nodes. The EQ nodes of the quantum wave, obtain
ZPE above Ecr, and their momentum is larger, than
the normal one. In order to preserve the lattice from

destruction, they transfer the excess momentum
very fast. Therefore, the energy transfer could be
expressed by the angular momentum change . 

2.11.2.2 Energy and resonance period analysis 
for MQ and EQ type of node.
Note: In a global aspect, the CL space is intercon-
nected. Then it contains two types of energy (dis-
cussed in Chapter 5): a connection energy - called
DC type and kinetic (oscillation) energy - called
AC type (like AC current). In a normal not dis-
turbed CL space the DC type of energy is hidden,
while the AC type appears as a ZPE recognized by
the Modern physics. In the following analysis the
AC type of energy is only considered.

Let making some energy analysis of a single
CL node. We may simplify the analysis by using a
simple analogical model, whose parameters are
able to represent approximately the dynamics of
CL node. Two classical models could be used: a
three dimensional harmonic oscillator and a coni-
cal pendulum. Here the model of the conical pen-
dulum is used, because it is more convenient for
some illustrations for energy propagation in CL
space.

The conical pendulum  may have two types of
motions: circular one and elliptical one. The circu-
lar motion of the pendulum fits to the trajectory
of MQ node, while the elliptical motion - to the
trajectory of EQ node. In order to fit the parame-
ters of the conical pendulum, we will use the equiv-
alence between the node energy and pendulum
energy. More correctly we will use the energy de-
pendence of the displacement from the equilibrium
position.

The node energy in relative units, can be esti-
mated by the return force curve given in Fig. 2.24.
While the equation for this curve is pretty complex,
it is replaced, by a fitted curve, given by the equa-
tion (2.26) and valid only for a displacement range
of: .

                      (2.26)

where: Fret - is the normalized return force,
and r is the displacement from the geometrical
equilibrium.

Let considering first the MQ case, corre-
sponding to a circular pendulum. In the node dis-
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placement, the return force is aligned to the axis
passing through the geometrical equilibrium point.
This force is equivalent to the force aligned with
the cenrapetal acceleration. Then the tangential ve-
locity for a circular motion is:

 

The kinetic energy is:

          (2,26.b)

The plot of the node kinetic energy (in rela-
tive units) in function of the displacement is shown
in Fig. 2.43A. The amplitude of  (calculated
by modelling the ZPE of CL node), corresponds to
a displacement along xyz axes  at normal ZPE.

                          Fig. 2.43A
        Kinetic energy of the oscillating CL node 
(in relative units) in function of node
 displacement along xyz axis
        
The equivalent trace of the oscillating MQ

node has a radius of r = 0.39, corresponding to a
normal ZPE.

Fig. 2.43.B shows the pendulum with its pa-
rameters.

                         Fig. 2.43.B

The kinetic energy (E) for a circular pendu-
lum (without friction losses),  could be expressed
by the potential energy, dependant on the height
from the central potion, but expressed by the dis-
placement r. 

                                         (2.26.c)
where: m - is the pendulum mass, g - is the

Earth acceleration, l - is the arm length, r - is the
displacement.

In order to fit the equation (2.26.c) to Eq.
2.26.b in a limited range of displacement, we nor-
malize it to  and introduce adjustable parameters
a and b, for energy scaling and displacement. 

                                       (2.26.d)
where: a - is a scaling parameter, b is dis-

placement parameter.
The Eq. (2.26.d) is suitable for simulation of

the MQ node energy, considering a relative dis-
placement up to 0.39 along anyone of the xyz axes.

The plot of Eq. (2.27.d) for l = 0.53, a = 0.4
and b = 0.035, for a range , is shown in
Fig. 2.43.C.

                          Fig. 2.43.C
Node equivalent energy in function of the
displacement (model by circular conical pen-

dulum)

In case of EQ node, the equivalent trace ob-
tains elliptical shape corresponding to radius larger
than r = 0.39. From the energy plot, shown in Fig
2.43.A,  it is evident, that, for equal deviations
around 0.39, the slope has different steepness.
Then an EQ node with larger eccentricity of the
NRM trace will have a larger energy. If considering
not equivalent but real trace shape, this difference
is even larger. This case could be analysed by the
model of elliptical conical pendulum. There are
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two important parameters in this case to be consid-
ered: the node inertial mass and the trace length.

The separation of the inertial mass from the
velocity is difficult task, because the inertial mass
may not be constant during the node cycle. For this
reason, we will consider that the node inertial mass
is a constant, only if estimated  for a full cycle and
averaged on large number of nodes.

The trace length is important parameter, be-
cause it defines the duration of the cycle. Having in
mind the influence between the neighbouring
nodes, we may assume, that any node  has a tenden-
cy to keep its cycle duration equal to the cycle du-
ration of its neighbours, so this will provide a stable
constant value for the period of NRM MQ. Then
the following question is reasonable: 

Is it possible the elongated trace of EQ
node to have the same NRM frequency as the
MQ node?

We will try to reply to this question by ana-
lysing the oscillation of the elliptical conical pen-
dulum. Initially we will estimate the period
dependence of the displacement r. The periods for
a circular conical pendulum , and a planar
pendulum , are given respectively by the equa-
tions (2.26.e) and (2.26.f)

                (2.26.e)

   (2.26.f)

Using up or down arrow index, for annotation
of the increasing or decreasing of the parameter,
we have the following dependence from r and  ac-
cording to Eqs. (2.26.e) and (2.26.f):

Circular pendulum (MQ case): When:  r/|\   T\|/   Ltc /|\   (26.g)
Planar pendulum:                       When:  θ/|\  T/|\  Ltp/|\   (2.26.h)

where: Ltc and Ltp are the trajectory lengths for both types
of pendulums, respectively

Now we have to determine, how the period
changes, when the trace becomes elliptical (corre-
sponding to MQ conversion to EQ). This is more
complicated task, but we may simplify it by exam-
ining the two options:  a circular pendulum and a
planar pendulum. The planar pendulum could be
regarded as a degenerated circular pendulum for

very large eccentricity. In such aspect, the men-
tioned two options appear as boundary cases, when
changing the elipticity. We can formulate the task:
What is the ratio between the periods of the planar
and the conical motions for one and a same pendu-
lum if the trajectory length in both cases is equal?

In order to get a simple expression, we will
use the deviation angle , knowing that the increas-
ing of the displacement r leads to increase of .
Equating the trajectory lengths we get .
where:  is the angle of the planar and coni-
cal pendulum, respectively. The period of the pla-
nar pendulum for a large angle is determined by a
sine series. Then we obtain the ratio between the
periods for the planar and the conical pendulum.

(2.26.i
)

The source of the return force  disappears
from the period ratio. The plot of the period ratio is
shown in Fig. 2.43.D. 

                                 Fig. 2.43.D
   Period ratio between planar and conical

pendulum for equal trajectory lengths

Having in mind, that the planar pendulum is
a degenerated elliptical conical pendulum, it is rea-
sonable to expect, that the period ratio changes a
continuous function between the two pendulum
cases. Consequently, the ratio between the period
of the elliptical conical pendulum and circular con-
ical pendulum will be also a growing function. 

Based on the provided analysis by the con-
ical pendulum we arrived to the following con-
clusions:
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The increase of the node energy causes in-
crease of the displacement according to Eq.
(2.26.d).

When considering a MQ node, (circular con-
ical pendulum), the increase of the displacement.
leads to decrease of the period, according to Eq.
(2.26.e). When considering  a EQ node, the in-
crease of displacement leads to increase of the pe-
riod, according to the Eq. (2.26.i). Consequently,
the node with excess energy may obtain the same
resonance period as the normal ZPE node, if its res-
onance trace has a proper eccentricity and trace
length.  Such node could be only a running EQ
node, included in a quantum wave. The condition
of the same resonance frequency between the MQ
and EQ nodes in the quantum wave is very impor-
tant factor for the wavetrain integrity.

The single EQ node could be regarded as a
carrier of a very small fraction of the electrical
charge. The unite charge of a single charge particle
(electron, positron or any unstable particles) is a
constant due to the IG forces of the particle that in-
fluence the EQ’s. In the same time the IG field as-
sures the equalization of the proper frequencies of
the EQs and their synchronization (by SPM vec-
tor). In such way the charge integrity and a constant
unite charge are assured.

We can summarise the following conclusions
about the EQ and MQ properties in a CL space at
normal ZPE.
• The main distinguishing feature of  the EQ is 

that it possesses an excess kinetic energy 
over the normal (AC type) ZPE of MQ.

• The degree of  the EQ eccentricity is deter-
mined by the node excess energy. The maxi-
mum value of the eccentricity  is limited, due 
to the CL space resistance to destruction 
(this intrinsic property of the CL space is 
analysed in Chapter 12). 

• A spatial formation of EQ and MQ nodes 
possessing one and a same proper resonance 
is expected to be stable.

• The EQs forming the E-field of the elemen-
tary particles are stationary (in respect to 
the particle coordinate system). They are 
kept by the IG field of the particle. 

• The EQs involved in the wavetrain of the 
quantum wave are of running type.

While the above made analysis is simplified
it is evident that more complicated analysis of the
3D NRM and SPM vectors is needed. This is out of
the scope of the present course of BSM theory. In
the next chapters we may touch  this problem
again, because it is related with number of physical
aspects: the integrity of the quantum wave, the in-
tegrity of the electrical charge around the elemen-
tary particle, the electron motion in quantum loops
in electrical field and so on.

2.11.2.3 Excess momentum of EQs involved in a  
quantum wave. Quasishrink effect of CL space.

In the previous paragraph we saw that the in-
teractions from the (CP) of the prisms do not con-
tribute to the energy of the EM wave. So we will
not take them into account in the provided below
analysis. 

In a free space environments, if EQ and MQ
nodes have one and a same NRM frequency, their
SPM frequency should be also the same. The mod-
ulus of the NRM, however is different for MQ and
EQ nodes. In case of MQ, the NRM vector has a
central point of symmetry for the whole cycle and
exhibits a rotational momentum with not linear an-
gular momentum. The rotational momentum con-
tributes to the synchronization of the magnetic
protodomains.  In case of EQ, the NRM vector ex-
hibits also a linear momentum, due to the quasi-
sphere polarization (elongation),  and simultaneous
rotational momentum. It is evident, that the linear
momentum depends of the degree of EQ polariza-
tion (elongation).

Let consider a CL domain of normal CL
space away from any particle and any external
electrical and magnetic field. In this case the node
inertial mass and the NRM frequency are constant,
so may express the MQ and EQ momentums by
some equivalent common parameters. 

Knowing the EQ distribution in the quantum
wave configuration, we may introduce a constant,
that depends only of the distance of the EQ from
the wave axis. It is convenient to introduce multi-
plication factor for the MQ node radius of rotation
in a form:  for a reason, that will be explained
below. Then the Eq. (2.25) for the angular momen-
tum takes the form

e/2
Copyright  ©  2001, by S. Sarg                                                                                                                                                             2-69



BSM Chapter 2.   Matter, Space and Fields
                                                 (2.27)

where: e is a linear eccentricity of the equiv-
alent elliptical trajectory

From the quantum wave configuration, we
know, that the eccentricity of the EQ is dependent
of the radial distance from the central axis of the
wavetrain. For a helical trajectory with constant ra-
dius, the eccentricity  is a constant. According to
the above analysis,  is constant for any quantum
wave. We assume also that, the node inertial mass
averaged for one resonance cycle is a constant. For
a given radial distance, the excess node momen-
tum, could be expressed as a change of the angular
momentum. Then differentiating (2.27) on r we ob-
tain the excess node momentum.

                                                (2.27.a)
For a neutral quantum wave, r changes from

some initial value ro to the boundary radius rb, at
which the eccentricity e of EQ becomes zero (or it
converts to a boundary MQs). Consequently, for

,  becomes also zero.
From Eq. (2.27.a) we see, that the excess mo-

mentum is a product of a constant linear momen-
tum , multiplied by the factor .  Then the
linear momentum for a constant radius is also a
constant. Assuming a constant node inertial mass
averaged for one resonance cycle, the velocity of
the momentum transfer between the neighbouring
nodes along one helical trajectory  is also a con-
stant.

We may express the equivalent excess mo-
mentum for the radial cross section of the wave-
train, when using the eccentricity corresponding
to one equivalent radial distance req. Then the
equivalent excess momentum  is:

                            (2.27.b)

If comparing the central point of the EQ node
motion with the Keplerian motion of planets it is
different.  For the oscillating EQ node, the return
forces along the major axis are larger than the mi-
nor one and the velocity change is much faster. The
real trajectory shape contributes additionally to this
effect. In the same time the node trajectory could
not obtain very large eccentricity, because the max-
imum and minimum radii of the node trace are re-
stricted within a limited range. This restriction is
imposed by the resistance of the CL structure to de-

struction. Therefore, we may expect that maxi-
mum of the IG(TP) field of the prisms
interactions  occurs in a finite sector of the trace
around the major semiaxis. Then the transfer of
the excess momentum evidently takes place in
that sector. The NRM quasisphere is aligned to the
xyz axes. Then the transfer of excess momentum
could be considered as a vector composed of
components along xyz axes. The actual momen-
tum transfer, in fact is provided by the abcd axes
during the resonance cycle, but this is not in contra-
diction with the above made considerations, using
xyz coordinates.

There is one additional feature of the momen-
tum transfer in the quantum wave. The helical tra-
jectories (within the wavetrain) containing EQs
with one and a same eccentricity, can be left hand-
ed or right handed. This obviously must be valid
for a case of polarized and unpolarized quantum
wave. 

Let find out what may determine the correct
conditions for the excess momentum transfer?

The motion of every CL node involved in the
quantum wave, is characterised by both vectors
NRM and SPM. The trajectories of these vectors
are 3 dimensional, and consequently, they posses a
handedness. The handedness momentum of the
SPM vector have much larger weighting factor.
than the NRM momentum. Therefore, it is respon-
sible for keeping the wave handedness. The CL
space provides equal conditions for propagation of
left and right handed wave. Once the quantum
wave is generated and the CL space domain in ho-
mogeneous the handedness is self supported.

The EQ node resonance trajectory and the ex-
cess momentum are illustrated in Fig. 2.44. The
case a. shows the real NRM trajectory, where 1 - is
the zone of the maximum momentum change, and

L mnωR r e
2
--- 

  2
=

e
ϖR

∆L mn ωRe( )r=

r rb= ∆L

mnr ωRe

eeq

∆Leq mn ωReeq( )req=
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2 is the zone of maximum kinetic energy. The case
b. shows the equivalent ellipse.

                                Fig. 2.44
EQ node momentum during the resonance cycle

The maximum linear momentum, shown in
Fig. 2.44 has a direction of y axis. Let assuming
that some external forces, having components only
along   direction and acting always against the
maximum linear momentum are applied, however,
their magnitudes are smaller. In result of this, the
vector of linear momentum will be affected as
shown in Fig. 2.45, while the energy balance of the
system must be preserved. Its new value of linear
momentum will have a direction at angle respec-
tively to y and z axes (see the explanation below).
This effect exactly appears in the neutral quantum
wave, where the electrical quasispheres are affect-
ed by the Coulomb forces. We may call this a qua-
sishrink effect of CL space. The term quasishrink
is used, because it does not affect the node distance,
but only the components of NRM vector. Fig. 2.45
illustrates how this effect changes the transfer mo-
mentum direction of the oscillating node.

                                  Fig. 2.45

       Change of the transfer momentum direction
       due to the  quasishrink effect of the CL space

 In case a. the equivalent momentum is
shown without  the quasishrink effect. In case b.
the quasishrink effect of the space is provided by
the Coulomb forces Fc. The energy for this forces
is taken from the total momentum of the quantum
wave and more accurately from its twisting fea-
tures. In result of this, the apparent NRM momen-
tum along axis y is reduced, but an equivalent
momentum Ph appears at angle in respect to the E
direction. In fact, if considering the point position
of the CL node in the wavetrain, the direction of Ph
coincides with the tangent of the helical trace pass-
ing through this point. One of  the components of
Ph provides the balance between the Coulomb
forces Fc and centripetal acceleration, while the
other one, Pc, provides the velocity for the energy
propagation in direction Z. If conditions for not
conserved angular momentum for the considered
CL node exist, the new component of the linear
momentum will be propagated between the neigh-
bouring nodes.

The induced Coulomb forces are moving
with the running EQs. They are responsible for
keeping a finite transverse width of the quantum
wave, in order to assure the  boundary conditions.
They assure also the transversal compactness of the
quantum wave by narrowing the radial energy dis-
tribution, as was discussed in § 2.9.4.4. According
to that analysis, the most suitable width was esti-
mated to be in order of  .   During the de-
tection process, however, the Coulomb forces are
destroyed and the transverse width appears as

. This value matches well with the relation
between, c, , , h, in the expressions, derived in
the next paragraphs.

2.11.3 Light velocity equation and relation 
between the CL space parameters and the fun-
damental physical constants.

It was assumed in the previous paragraphs,
that the energy between neighbouring nodes is
transmitted per one resonance cycle. Then the
change of the axial momentum and its components
Ph and Pc can be expressed by number of reso-
nance cycles. This will greatly facilitates the deri-
vation of the light equation. Having in mind the

y±

δλ λ/16=

∆λ λ/8=
µo εo
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configuration of the quantum wave, we may also
simplify the task by analysing the vector of the run-
ning EQ node.

Fig. 2.46 illustrates the orientation of  the
running EQ, where: A - is a 3D view showing two
consecutive positions of the running EQ; B - is a
view showing the helical path and EQ in a perpen-
dicular plane; C - a view of the two positions of EQ
in another plane. Any running EQ node at distance
Rh from the axis Z will have constant momentum
components Ph and Pc for an instant time. If con-
sidering consecutive time points, separated at time
distance of tr, the running node will pass a curve
linear distance dn along the helical trajectory.
 

                                    Fig. 2.46
Momentum propagation expressed by a run-

ning EQ through a helical trajectory

The long axis of the running EQ is always
normal to the axis of propagation Z, while its centre
is at distance Rh. The vectors from Vt1 to Vt4 are the
tangent momentum velocities of the oscillating
node. The change of the angular momentum due to
the Coulomb forces in discussed in §2.11.2.3 (hav-
ing some radial gradient in the quantum wavetrain)
provides a velocity component for moving the EQ
in a helical trajectory instead of straightforward. If
referencing to the laboratory rest frame the Vt1 ve-
locity will contain an advancing velocity compo-
nent aligned to the direction of the quantum wave
propagation. For this reason Vt1 is shown larger
than Vt3. The advancing velocity component could
be translated to the central point of the quasisphere,

because it is always parallel to the Z axis. View B
shows that the velocity Vt has one and same magni-
tude for the tangential axis and the Z axis, because
of the circular symmetry of the electrical quasi-
sphere in this plane. We have a right to apply this
consideration,  because the momentum transfer oc-
curs per one resonance cycle.

For the running EQ, the NRM vector carries
an energy momentum along the helical trace,
which we may call a helical momentum 

                                                           (2.28)
where: ph is a helical momentum (momentum

along the helical trace),  is a helical component
of velocity, mn is a node inertial mass.

The defined helical momentum does not need
to be compensated for a centripetal acceleration,
because it is already compensating by the Coulomb
forces and the lattice quasi shrink effect. Therefore,
the total helical momentum from all EQs carries all
the photon energy. For simplification of the analy-
sis we may consider the total photon energy is car-
ies by an equivalent helical momentum of one
equivalent EQ at equivalent radius from the central
axis of the wavetrain.

 Knowing that the integrity of the propagated
quantum wave is preserved, we have to find the
corresponding velocity, , in a straight direction
along Z axis. There is one important considera-
tion: the excess momentum is propagated by the
right and left handed nodes, which interact between
themselves. In such case, the quantum wave mo-
mentum could not be considered as a sum from the
right and left handed nodes momentums. The same
consideration is valid for the propagation velocity,
of the photon. According to the present concept of
Modern Physics this velocity carry the whole
“photon mass”. In order to comply to this consider-
ation, but using the presented concept and having
in mind the complimentary interactions between
the right and left handed CL nodes, the propagation
velocity could be regarded as a square root of the
product from the right and left handed velocity
contributions.

                                                        (2.29)
where: c - is the light velocity (propagation

velocity),  are respectively the linear ve-
locity components contributed by the right and left
handed nodes.

ph mnυh=

υh

υz

c υRυL=

υR and  υL
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Considering the integrity of the whole E-field
of the quantum wave, we can replace the radial en-
ergy distribution whose shape is shown in Fig. 2.38
by a rectangular function having the same area.
Then the sum of the individual NRM vectors at one
moment will be replaced by one equivalent NRM
vector, corresponding to equivalent electrical qua-
sisphere at a radial distance corresponding to the
half maximum of the radial E-field. The equivalent
helical path can be defined by a radial distance at
half maximum equal to  (see Fig. 2.38). As a re-
sult, we may relate the energy properties of the in-
dividual running EQ, but via some equivalent EQ
located at equivalent radial distance from the cen-
tral axis of the wavetrain. 

The introduced equivalent EQ will carry
the whole energy of the quantum wave (photon)
while moving through an equivalent helical path
centred around the direction of the quantum
wave propagation.

Let estimating the components  by
the division of the equivalent helical path, on the
time for this path. We may use the first harmonic
wave, for simplicity, and to show later that the re-
sult is valid for all harmonics. Knowing that in the
Earth local field , we may use the Comp-
ton parameters for the SPM vector. Then the equiv-
alent helical path for one SPM cycle is

                                                       (2.30)

                                     (2.31)
where: khe - is the  coefficient for the equivalent
helical path

Applying the Eq. (2.30) for the boundary ra-
dius we have:

                                      (2.31.a)
where 

     - is the boundary coefficient accord-
ing to Eq. (2.20.a):            

Without confusing with the node distance of
CL, that is a constant, in order to distinguish the
calculated distances for both helical traces, we will
use the distances: dnb - corresponding to boundary
path (the helical path at the boundary radius, where
MQs form the boundary conditions of the wave-
train) and dne - corresponding to the equivalent
path (the helical path at the equivalent radius valid
for the equivalent quasisphere, defined above and
carrying the total photon energy).

Fig. 2.47.a shows the resonance traces for
magnetic and electrical quasisphere respectively.
Fig. 2.47.b shows the same traces, but presented as
equivalent circles (for simplification of the follow-
ing analysis). Let expressing the node distances dnb
and dne by their equivalent radii rdb and rde, which
are shown in the same figure. We may accept, that
the following ratio is valid:

                                                  (2.33)

Assuming that the energy is transferred be-
tween the neighbouring nodes per one resonance
cycle we can write:

                                                     (2.34)
where:  NRQ is the number of resonance cy-

cles per one SPM MQ cycle.
The Compton time tc is related to the node

resonance time according to the relation:
                                              (2.35)
Then the resonance frequency is
                                            (2.36)
where:  - is the number of resonance cy-

cles in one SPM MQ cycle (must not be confused
with cycles per second).

                                 Fig. 2.47
  Trace projections of resonance cycles (a.) and their 
equivalent presentations (b.)
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It is evident, that the following relations are
valid.

                    (2.37)

The momentum velocity projection on the Z
axis can be estimated by the path along Z axis per
one SPM cycle,  that is equal to . Therefore, the
light velocity component, contributed by the right
handed nodes is:

           (2.38)

If using not the first harmonic, but any sub-
harmonic, the Eq. (2.37) gives the same result (be-
cause  and  get multiplication by one and a
same number). The velocity component, contribut-
ed by the left handed nodes  is a same as  Then
according to (2.29), the equation for the light ve-
locity is

                          (2.39)

The Eq. (2.39) is not still in final form. Al-
though it will help us to identify the relation be-
tween the well known parameters of the physical
vacuum (permeability and permittivity) and the CL
space parameters. Substituting c in Eq. (2.39) with

 and rasing on square we get

                             (2.39)

The dimensions of the expression (2.39) are
easily determined, having in mind the expression
(2.37). Now the task is to find the expressions of
the separate parameters of the product. The simple
separation of the parameters in two terms could not
give the correct result, because  and  may con-
tain common parameters, that are eliminated in
their product. However, we may guess what are the
eliminated parameters, by examining the dimen-
sions of  and . Working in SI system, we can
manipulated the dimensions of the  product, by
eliminating the common dimensions, until obtain-
ing the dimensions of Eq. (2.39).

               (2.40)

Eliminated dimensions for :      (2.41)

Eliminated dimensions for :  

Some eliminated parameters that are dimen-
sionsless are not directly apparent. Some other pa-
rameters, as the electron charge, for example, are
defined at special conditions.

From dimensional expression (2.40) we see,
that some mass should participate in  and ,
while it is eliminated in their product. Let for this
reason we multiply the nominator and denominator
of  Eq. (2.39) by the mass parameter mn. The cor-
rectness of the obtained expression will be verified
later. Then providing a proper grouping in brackets
we get: 

                 (2.42)

We will see later that mn is a constant. Then
all the parameters in the left bracket are constants,
not depending on the energy of the propagated
wave. The term  also could be regarded as a
solid angle corresponding to one resonance cycle .
It is a dynamical parameter of NRM vector imple-
mented in the SPM vector which forms the MQ.
Consequently the left bracket shows features indi-
cating that it corresponds to . Then the right
bracket should be the expression for . The latter
could be presented also as:

                                          (2.43)

where:   - is the angular momentum change
of NRM vector, i. e. the momentum that carries the
energy. This momentum multiplied by the number
of SPM cycles in all wavetrain will give the total
energy. 

We have to find what is the reaction of the CL
space to disturbance pulse with infinite small dura-
tion. The response of such disturbance will be
equal to the relaxation time constant. The relaxa-
tion time constant will likely define the transition
envelope of the photon wave at the start. A more
detailed discussion of the relaxation time constant,
later referenced also as a space-time constant of CL
space is given in §2.13.A. Its apriopry accepted
theoretical value is:

   (sec)              (2.44)
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Due to the space-time considerations of the
relaxation time constant the light velocity put in
brackets is used as a dimensionsless factor. This
consideration is later used in Chapter 3 for defini-
tion of Dynamic CL pressure which is used suc-
cessfully in Chapter 5 for derivation of the
background temperature of CL space as a signature
of the Zero Point Energy, a well known parameter
in Modern Physics.

We will use the equivalence between the first
harmonic energy (511 keV) and the electron mass
in order to determine the mn. parameter.  In Chapter
3 the charge to mass equivalence principle also will
be explained. Applying this principle, we can esti-
mate the inertial node mass by the equation:

                                             (2.45)

For this reason we need to estimate the
number of involved nodes, from the expression:
No of nodes = [(photon volume)/(node cell vol-
ume)]  (2.46) The node cell volume should be de-
termined from the boundary conditions:

. 
In order to estimate the volume we need the

wavetrain length. This is in fact a length, that
could be practically measured by Michelson inter-
ferometer with adjusted path length. The maximum
path length at which the interferogram is still pos-
sible will provide this length that we may call a  co-
herent length.

The coherent length and coherent 
time are related by the simple relation:

                                         (2.46.a)
The coherence time could be considered as

the  elapsed time, between the front and back
end of the passing quantum wave, measured by
a stationary observer.

The coherent times for a monochromatic
thermal source and for lasers are very different. In
our case we will consider only the first one. For
best monochromatic thermal sources the coherent
time is in order of 10-8 sec.

Notes: 
(a) The above definitions of a coherent length

ant time are for a not correlated single photon.
They should not be confused with the coherent
length and time parameters of the lasers, where the

photons are correlated by time (time instant of
emission) and space (mutual spatial interactions).

(b). We should not confuse the coherence
time with the detection time. The latter is much
smaller, because, the photoelectron in the detec-
tion process appears after all wavetrain energy
is transferred to the detector. The detection proc-
ess in fact follows the end of the wavetrain. 

If considering the relaxation constant as a
transition time, the transition length of the wave-
train is:

                                             (2.46.b)
 The estimation of the coherent time or length

for a single 511 keV gamma photon is a difficult
task. For this reason we will use the CL pumping
time for generation of this quantum wave. It is
equal to the lifetime of the parapositronium 1’So
(p-Ps). (This is discussed in Chapter 3). Its value in
vacuum is 125 psec. Here we will assume that the
pumping time is equal to the coherence time in
this case. 

 According to Eq. (2.46.a) and (2.46.b) the ra-
tio between the coherent and transition length of
the wavetrain is

                            (2.47)

The total wavetrain length is , while its
cross sectional area, defined by the boundary radi-
us of  is  (0.5λ  is used instead of
0.6164λ, because of possible EQ slope change near
the boundary). Then the volume of the wavetrain
can be expressed as:

                        (2.47.a)

Substituting the volume from Eq. (2.47.a) in
Eq. (2.46) and dividing the total mass of 511 keV
by the number of nodes, we get the equation of  the
node inertial mass mn, expressed by the CL pa-
rameters.

                                  (2.48)

The node inertial mass, mn,  could be regard-
ed as an equivalent parameter. This is because the
CL node distance defines the boundary of the dis-
tance scale in CL space, so the inertial properties
we are familiar with are valid only for larger dis-
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tances than this one. The equivalent node inertial
mass, however, is useful for finding the relation be-
tween the intrinsic CL space parameters and the
fundamental physical constants.

The parameters  and  in system SI are es-
timated by using the Coulomb unit of the charge.
However the terms of Eq. (2.42) are more conven-
ient to be referenced to the charge of the electron.
Then the following expressions are valid:

      - referenced to Coulomb
 

          - referenced to electron charge q        (2.49)

           - referenced to Coulomb

           - referenced to electron charge q       (2.50)

Applying some substitutions in the second
term of Eq. (2.42), and referencing to the electron
charge we obtain:

                 (2.50)

From the dimensional Eq. (2.41) we identify
the eliminated parameters for 

                                  (2.51)

The reason to use  and  in the guessed pa-
rameters is that they are the basic parameters of the
SPM effect, which is responsible for the constant
light velocity. Multiplying the left term of the
bracket of (2.50) by the eliminated parameters ac-
cording to Eq. (2.51) and by q2, according to
Eq(2.49), we get the final equation for .

                                    (2.52)

In a similar way the final equation for  is
obtained.

                                    (2.53)

If knowing the factor krd, we can determine
the parameter NRQ, and consequently the reso-
nance frequency of the CL node. The factor krd,
given by Eq. (2.33) could be approximately esti-

mated by the return forces plot of the node dis-
placement, shown in Fig. 2.24 in Chapter 2. From
this figure the node displacements along abcd and
xyz axes are respectively: 0.2 and 0.4 values, nor-
malised to the dabcd, which is the node distance
along one of the abcd axes. Then the average dis-
placement, r is: 

For a value of  , we get the following
results for the Cosmic Lattice:

 - number of resonance                (2.54)
                                         cycles for one SPM cycle

 (Hz)  - node resonance frequency  (2.55)

   (m)   - CL unite cell size (along xyz 
                                          axes) at boundary                (2.56)

   (kg) - CL unit cell inertial mass   (2.57)

Note:  is valid for xyz CL unit cell and node res-
onance frequency, while  and  are defined for
CL unit cells only. For approximate calculations,
mn could be considered valid for a single CL node,
because any CL xyz cell includes sharing nodes
from the neighbouring cell. 

From eq. (2.48) we can directly express the
Plank’s constant by others fundamental constants
and CL node parameters.

 
   (N m s)                   (2.58)

where: (c) - is a light velocity as a dimensions-
less factor.

 - is a dimensionsless factor given by Eq.
(2.47)

The unit electron charge expressed by CL
space parameters is:

        [C]                    (2.58.a)

Summary and conclusions:
• The introduced parameter of node inertial mass 

allows to find the relation between the CL 
space parameters to the fundamental physical 
constants.
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• The CL node parameters: the node distance, the 
proper resonance time and the inertial mass are 
the three basic parameters defining respectively 
the space, the time and the inertial property of 
the macroworld of the elementary particles.

• The weak dependence of the node distance by 
the gravitational field of the matter (Newtonian 
gravitation) causes a small change of the CL 
space parameters. This is behind the General 
Relativity effects, observed in the macro world 
scale.

• The relativistic properties affect directly the 
quantum motion of the electron.

Detailed analysis of the quantum motion of
the electron is provided in Chapter 3.

 2.12 Relation between the intrinsic and the 
inertial mass of the CL node.

The inertial factor defined by the Eq. (2.6.a)
is a ratio between the interaction energy and aver-
age gravitational energy. 

The CL node interaction energy is in fact the
kinetic energy of the node oscillations. The node
moment of inertia is , so the interaction energy
is:

                                                              (2.59)

The average gravitational energy, can be ex-
pressed as a gravitational potential between two
neighbouring node. In fact every node, regarded as
a central one, has 4 neighbours (connected along
the abcd axes), so we may consider that the central
node interacts with 1/4 of every neighbouring
nodes. In such case, the magnitude of the gravita-
tional potential could be regarded as between two
nodes at distance of , defined for abcd axes. This
potential is obtainable by integrating on a distance
the IG forces between two nodes in a void space.

                   (2.60)

where:  - is a gravitational constant in
empty space between the two deferent types of in-
trinsic matter; mno - is the intrinsic mass of the
node, (averaged between the right and left handed
nodes); d - is the node distance along abcd axes.

Substituting (2.59) and (2.60) in Eq. (2.6.a)
and having in mind that , we get the ex-
pression of the inertial node mass.

                                  (2.61)

where: IF is the intrinsic inertial factor of the
CL node

The inertial factor is a function of the node
shape, the node distance dnb and the resonance time
tR.

From equation (2.61) we see that for CL
spaces with different node distances, the parame-
ters, affecting the inertial node mass are: ,  and

. All other parameters are constants.

2.12.A. Plank’s constant estimated by the 
parameters of the intrinsic matter and the CL 
space

Substituting mn from (2.61) in (2.58), we get
for the Plank’s constant:

                             (2.62)

Note: The dimension of God is not equivalent
to the dimension of G (universal gravitation con-
stant). This is because God is involved in IG equa-
tion, where the distance participates in a cubic
power instead of square). For this reason, in order
to avoid any confusion in the analysis in BSM a SI
systems of units is always used.

The Equation (2.62) could be useful for esti-
mation of the quantum energy exchange between
two different gravitational fields. This is a problem
that is related to the General relativity. For this rea-
son the inertial factor If , however, is necessary to
be analysed. This is a complicated task, requiring
number of unknowns, so it is not discussed in the
present course of the BSM theory.

2.13 Physical meaning of the Planck’s constant, 
by using the basic parameters of CL space.

The physical meaning of the Planck’s con-
stant appears more apparent if using the basic pa-
rameters of the CL space.

Analysing  by Eq. (2.43) we see that the
term  has the same dimensions as the Planck’s
constant: (m2kg sec). Then the product  have a
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dimensions of energy. We see also, that the expres-
sion (2.58) that we derived for the Planck’s con-
stant, contains  in the denominator. If
multiplying this equation by the first SPM harmon-
ic frequency , we obtain  (divi-
sion on electron charge provides energy in (eV).
This energy value is equivalent to a integral mo-
mentum change of the CL nodes, when a first har-
monic wave is propagated. Following the same
logic we may apply this for n-th subharmonic. The
frequency of the n-th subharmonic quantum
wave (photon) is equal to the SPM frequency di-
vided on n. Then the  photon energy is

         
(2.63)

where:  - is photon frequency
The Eq. (2.58) could be presented also as a

torque at SPM (Compton) frequency.

                                   (2.64)

where: 
                         (2.65)

Consequently the Plank’s constant could be
regarded as a specific torque, measured at the SPM
frequency. In such case it  is expressed only by the
CL space parameters.

The Equations (2.64) and (2.65) provide use-
ful link for estimation of the Plank’s constant by
the Compton frequency, which is experimentally
determined value of the SPM frequency. The
Compton frequency (discovered by the great amer-
ica physicists Compton) is simultaneously the first
proper frequency of the oscillating electron.

The obtained expression of the Planck’s con-
stant gives a possibility to estimate not only the
quantum wave features of CL space, but also to
find its basic parameters: the static and the dy-
namic pressure. These two parameters are directly
related to the following physical parameters and re-
lations:

- the Neutonian (apparent) mass of the atomic
particle and macrobodies in CL space

- the energy balance between ZPE of CL
space and the minimum kinetic energy of the ele-
mentary particles

The determination of the static and dynamic
pressure is discussed in Chapter 3.

We can summarize that:
• The Plank’s constant expresses the equiva-

lent angular momentum change of all electri-
cal quasispheres for a first harmonic 
quantum wave. 

• The Plank constant can be measured as a 
specific  torque resistance, at the SPM fre-
quency.

2.13.A. Zero Point Energy uniformity and CL 
space relaxation time constant

The measurable parameter of the ZPE (AC
type) according to BSM is the temperature, esti-
mated by the Cosmic Microwave Background
(CMB). We may call it a CL background tempera-
ture. The BSM theory shows the relation between
the background temperature, the proton volume
and the ideal gas constant. Chapter 5 provides the-
oretical estimation of the background temperature
obtaining a result, that differs only by 0.06 K. from
the measured temperature by the CMB method. In
the calculations, the CL space-time constant is used
in a sense of relaxation time, characterizing some
fluctuations of CL domains, responsible for ZPE
uniformity of CL space. These fluctuations are
very low energy waves, related with spontaneous
creations and destructions of magnetic protodo-
mains with length of whole number of Compton
lengths. Such fluctuations are called Zero Point
Waves (introduced by BSM). The  energy of these
waves is very low and they are  not possible to be
detected directly. Although very rarefied gas sub-
stances and especially the Hydrogen, distributed in
the space, obtain dynamical equilibrium. Then the
ZPE of the space is estimated indirectly by the
emission spectrum of these atoms and especially
the Hydrogen. Without the existence of the zero
point waves, the uniformity of the Cosmic back-
ground temperature is not possible to be explained.
There is quite logical consideration, that the av-
erage time of the magnetic protodomains re-
combination is equal to the relaxation time
constant of CL space. 

 The CL relaxation constant, perhaps is in-
volved also, in the transition process of the wave-
train formation. For this reason this constant was,
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also, used in Eqs. (2.47) and (2.48)  for determina-
tion of the node inertial mass.  

There is one value of the relaxation constant,
as a theoretical guess, that fits well to the equations
used in BSM. It   is defined by the expression.

 
                               (2.66)

where: (c) is a light velocity used as a dimen-
sionsless factor.

The use of the light velocity as a dimensions-
less factor in (2.66) comply with the adopted space-
time consideration particularly, assuming that at
such motion the electron oscillation, for example,
must be stopped. This is a theoretical consideration
only because at relativistic velocity the quantum in-
teraction efficiency is decreased, while the mass is
increased. At particular velocity, for example a
synchrotron radiation effect of the electron beam
takes place.

The value of the relaxation constant given by
Eq. (2.66) is valid only in SI units. This does not
mean that the relaxation constant is dependent of
the system unit of measurement. This is easy to be
proved by checking the dimensions identity.

                              (2.66.a)

       (2.66.b)

The dimensional equation (2.66.a) is for a SI
measurement system, where, the length unit is 1 m.
The equation (2.66.b) is for a measurement system,
where the unit length is 1 cm. From the two equa-
tions we see, that the relaxation time could not be
considered as an absolute parameter, but a
space- time parameter of CL space. 

The reciprocal of the relaxation time appears
as a relaxation frequency parameter. Its value is:

    [Hz]                     (2.66.c)

Both the time relaxation constant and the re-
laxation frequency are parameters of the zero point
wave. These  waves are responsible for equalizing
the ZPE of CL domains. In such aspect they are im-
portant real parameters. In Chapter 3, the relaxation
frequency is used to define the dynamical pressure
of CL space.

The relaxation time constant is defined only
for motion event in CL space and is directly related
to the light velocity according to Eq. (2.66). For
this reason it is more appropriate to be called a
space-time constant. This definition is in closer re-
lation to the space-time concept of the physical
vacuum.

2.13.B. Fundamental time based constants and 
their connections to the levels of matter organi-
sation

Some of the fundamental constant are given
in frequency, others in time units. In order to make
comparison we may regard the periods of some
fundamental frequencies as a time constant and v.
s. versa. In such aspect we may express the periods
of the CL node resonance frequency  and the
SPM (Compton) frequency as a time constants. 

One fundamental time constant, that we may
use is the  Plank’s time, for which there is not so far
a physical explanation. It is given by the equation:

 
 (sec)                (2.67)

where: G - is the universal gravitational con-
stant

Comparing to the other time constants, the
Plank’s time is the smallest one. Let to use the re-
ciprocal value of these time constants, and express
them as frequencies. The parameters  and  are
related with periodical oscillations. Then the
Planck’s time might be also a parameter of period-
ical oscillations. The value of the three frequencies
are given in Table 2.2

Levels of matter organization              Table: 2.2
-------------------------------------------------------------------------
Level       Time       Frequency,           Type of oscilla-
    x           (sec)              (Hz)                                tion
-------------------------------------------------------------------------
   0       5.39E-44       1.855E43           99.629     
   1
   2       9.152E-30     1.0926E29         66.86       CL resonance
   3       8.093E-21      1.236E20          46.26       SPM, Electron
  -----------------------------------------------------------------------

If drawing a fitted line function of  vs the
“Level” number we see that the line become pretty
close to a robust line if one level of matter organi-
zation is missing. This level is identified as a level

tCL
c( )
νc
------- 2.426 12–×10   sec= =

c( )
νc
------- m/sec( )

1/sec
------------------≡ m( )=

c( )
νc
------- cm 100 )× /sec( )

1/sec
----------------------------------------≡ cm( )100 m( )≡=

νc
c( )

------- 4.12148 11×10=

tR
tc

tpl
Gh

2πc5
------------ 5.39 44–×10= =

tR tc

ν ν( )ln

ν( )ln
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1 in Table 2.2. (The possibility of such level is dis-
cussed in Chapter 12 Cosmology). 

Fig. 2.74A shows a plot of  versus the
level of matter organization , x. 

 

                              Fig. 10.1

The CL space exists in 2 and 3 level of the
matter organisation, but not in level 0 or 1.

The very steep falling trend (having in mind
the logarithmic scale) might be explained by the
change of the inertial factor of the structures corre-
sponding to the particular level of the matter organ-
ization. We see that the relation between the trend
and the inertial factor (defined in Chapter 2) fol-
lows the rule: a larger inertial factor - a lower fre-
quency. Then we come to a logical conclusion that
the level zero should correspond to a matter organ-
isation with a smallest inertial factor. For now, we
may accept that this level corresponds to the bulk
primordial matter. Although, in Chapter 12 (Cos-
mology) we will see that it could be attributed to
the a simplest material structure that possess oscil-
lation properties.

It has been mentioned. in number of para-
graphs from the previous analysis, that the intrinsic
matter should have its time constant. In such aspect
we may accept that: 
• The Plank’s time is probably the mean value 

of the time constants of the both substances 
of  intrinsic matter from which the prisms 
are built.

The obtained relation between the fundamen-
tal time constants and inferred guess about the
Plank’s time could put more light about the proper-
ties of the intrinsic matter. It may, also, help to un-
derstand the very basic fundamental law - the law
of intrinsic gravitation.

2.14. Basic measurable parameters of the CL 
space. 

The cosmic lattice is able to occupy a defi-
nite volume in empty space without need of bound-
ary conditions.

Static pressure of CL space
When a complex helical structure is put in

CL space,  the CL nodes are displaced only by the
volume of the first order helical structure, because
this volume is occupied by RL, which has much
larger stiffness. When such structure is in motion,
the CL node fold, deviate, pass, and restore their
positions, so they passes through the stronger local
field of the structure, but not through the volume of
its FOHS. Consequently, for any complex helical
structure, the CL space could exercise a pressure
only on its FOHS’s. We call this parameter a static
CL pressure.  When the structure is in motion, the
CL space behaves partially as a real gas and partly
as an ideal gas for FOHS’s. The latter state is due
to the electrical and magnetic fields. 

Dynamic pressure of CL space
The CL space exercises forces on the enve-

lopes of the helical structure (the proton, for exam-
ple) in form of Zero Order Waves. The reason, that
these forces are exercised on the envelopes, but not
only on the more dens FOHSs, is that the wave-
length of these waves is much longer, than the fine
geometrical parameters of the FOHSs. As a result,
the external shell of the proton feels a dynamic
pressure exercised by the smallest waves of the
CL space - the Zero Point waves.  It is an alter-
native type of pressure with frequency equal to
the recombination frequency of the magnetic
protodomains. (reciprocal to the CL relaxation
constant).

The static pressure gives a possibility to
formulate the apparent mass of the elementary par-
ticles, made of helical structures. The dynamic
pressure helps to estimate the energy equilibrium
between the CL space and the atoms. 

The static and dynamic pressure are both
measurable parameters. Their values are deter-
mined in Chapter 3, where the mass equation is de-
rived.

ν( )ln
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Background temperature of CL space
Another important parameter of the CL

space is the Zero Point Energy (ZPE) (dynamic
type or AC). Its measurable parameter is the CL
space background temperature. According to
BSM, the cosmic microwave background radiation
is the background temperature of the deep space. It
is formed by the the emission from atoms and mol-
ecules in the deep space, as they are in dynamical
equilibrium with the ZPE of the space. The back-
ground temperature of the Earth local field can be
calculated by using the universal gas constant, the
static CL pressure and the proton dimensions. Its
value is calculated in Chapter 5. It appears about
0.07 K  higher than the measured CMB from the
deep space, but this is reasonable (see the discus-
sion in Chapter 5). 

 The basic parameters of the CL space are
the following:

- resonance time: , (corresponding to the
proper resonance  frequency of the CL node, ;

- SPM  frequency ,  (Compton frequen-
cy for  Earth gravitational field );

- number of resonance cycles per one SPM
cycle: ;

- light velocity (for quantum wave propaga-
tion): ;

- static pressure: ;
- dynamic pressure: 
- apparent mass of particle of helical struc-

tures (in CL space only): ;
- node inertial mass: ;
- background temperature parameter of

ZPE: 
- relaxation time constant of CL space: 
- Palnk’s constant: h
- unit electrical charge: q

Some of the derived basic equations (see
Chapter 3) expressed directly by the CL parameters
are the following: 

The static CL pressure, when   using the
SPM (Compton) frequency is:

                        [(3.53)]

where:  - is the fine structure constant; ge is
the gyromagnetic factor of the electron

The static CL pressure, when using the CL
resonance parameters is:

                    [(3.54)]

where:  - is the node distance in xyz axes
of the node coordination system

      - is the quantum wave boundary con-
dition factor, given by Eq. (2.20.a):

,
0.6164 - is a factor complying to the Rayleigh

criterion 
The dynamic CL pressure is:

                                      [(3.62)]

The newtonian mass of any particle of heli-
cal structures in CL space is determined by the 
volume of its FOHSs.  The mass equation allows 
to calculate the newtonian mass of the atomic par-
ticles, if the configuration of their helical struc-
tures are known. 

    [kg]                    [(3.57)]

where: V - is the volume of the FOHS’s in-
cluded in the particle

Note: If a first order positive structure is in-
cluded in first order negative one, the external vol-
ume only should be considered.

 The inertial mass of the oscillating node is:

   [kg]                          (2.73)

where: (c) - is the light velocity as a dimen-
sionsless factor

              - is a factor given by Eq. (2.47).
The light velocity by the resonance CL pa-

rameters is:

                                 (2.75)

where:  - is the resonance angular frequen-
cy;  and  - are respectively the node distance
and the boundary factor for a quantum wave.

Zero Point Energy discussed above, has its
measurable parameter: a temperature back-
ground. Its value for a deep space is provided by
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the Cosmic Microwave Background. In the local
field the temperature background can be calculat-
ed. This is demonstrated in Chapter 5.

The current model of BSM theory, provides
the following estimates for some of the CL space
parameters:

 

  [sec]            [Hz] 

   [kg] 

                         

    

   [m]   - node distance along xyz
axes

[m] node distance along
abcd axes

2.15. Gravitational law in CL space
The gravitational law in CL space is the New-

ton’s universal law of gravitation. Why the inverse
power of 3 law in empty space becomes inverse
power of 2 law in CL space?

The answer of this question is not simple
enough, in order to be provided in this chapter. But
some useful consideration, related with this aspect
are the following:

a. A unit volume of cosmic lattice around a
massive object has a specific weight.

b. For the first order structures, the cosmic
lattice behaves as a real gas at constant tempera-
ture, defined by the ZPE.

c. When a particle, (comprised of huge
number of helical structures with different spatial
arrangement and dynamics) is in a gravitational
field of a massive body it feels an attractive force,
that is defined by the Newton’s law of gravitation.

d. The gravitational forces acting on the heli-
cal structures are propagated by the central part of
the prisms.

e. The lattice pressure around the mass object
is slightly higher than in the open space. The mac-
robodies, however, in comparison to the first order

helical structures are very rarefied. For this reason
the effect of the space shrink (CL node distance) is
very weak. 

The feature c. may lead to the following con-
clusions: 

1) The gravitational forces defined by the
Newton’s law of gravitation are manifestation of
the intrinsic gravitational forces in CL space en-
vironment. 

2) The gravitation is not defined by the
node resonance frequency and consequently of
the light velocity. 

The provided above logical considerations
leads to a conclusion, that the Newtonian gravita-
tion is a propagation of the Intrinsic Gravitation in
conditions of CL space environment. While the
propagation of the IG field between prisms that are
not in motion could be quite fast its propagation
through the oscillating CL nodes might be delayed
and limited by the oscillation period of NRM. This
is so, because the proper resonance frequency is
much smaller than the Planck frequency (or the fre-
quency of the envisioned level 1 of the matter or-
ganization as shown in Table 2.2). This envision
may not seem enough convincing here, but it is
supported by the later analysis and especially by
the analysis of some observational data in Chapter
12.

2.15.0. Mass - energy - charge equivalence prin-
ciple.

The matter and mass are quite different cate-
gories according to BSM. The matter we are famil-
iar with, appears as a Newtonian mass. The
intrinsic and the Newtonian mass are different at-
tributes of the matter. For simplicity we may refer-
ence to the Newtonian mass as an apparent mass
(or simple a mass), and to the intrinsic mass as a IG
or intrinsic mass. The principle of mass-energy-
charge equivalence, discussed below is valid only
for the particles exhibiting apparent (Newtonian)
mass in CL space.

2.15.1 Mass-energy equivalence
The mass - energy equivalence, according to

BSM, uses the Einstein’s equation , but
with a remark, that the intrinsic matter does not dis-
appear, when the apparent mass vanishes. Instead

NRQ 0.88431155 9×10=

tR 9.152093 30–×10= νR 1.092646 29×10=

mn 6.94991 66–×10=

PS 1.373581 26×10= N
m2
------

PD 2.025786 3×10= N
m2Hz
--------------

dnb 1.0975 20–×10=

dna dnb/2≈ 0.54876 20–×10=

E mc2=
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of that, the matter undergoes one of the two types
of conversion: 

- the matter becomes hidden as a whole heli-
cal structure;

- the matter is disintegrated into prisms and
RL nodes  that finally may recombine into CL
nodes.

The both processes are related with energy
release, but the prisms are unchanged. The BSM
theory shows that, there is not annihilation of the
matter at all, even at the temperature of  the nuclear
fusion and the high energy cosmological phenom-
ena that are directly detected.

2.15.2 Energy equivalence principle for the 
electrical charge and charge unit equality
 2.15.2.1 Considerations and principles

The static electrical charge could be regarded
as a kind of energy distributed in form of electrical
field around the particle. Indeed, the electrical qua-
sispheres around the particle contain larger energy,
than the magnetic quasispheres. In Chapter 6 it will
be discussed, that the neutron to proton conversion
is related with creation of pair charges: one static
and one dynamic as a quasiparticle wave. The pro-
ton gets mass deficiency, because its toroidal shape
is twisted. In this process the internal rectangular
lattices (RL) of all FOHSs get partially twisting,
which leads to a small volume shrinkage. The ener-
gy equivalence of this volume shrinkage according
to the mass equation is equivalent to the sum of the
energies of the static charge and the quasiparticle
wave. The both are reaction of CL space in order to
preserve the energy balance.

Then applying the energy conservation law,
the charge-energy equivalence principle can be for-
mulated. Instead of universal formulation, which
requires mentioning of  lot of conditions,  we  can
reference the principle to the neutron - proton con-
version process (see details in Chapter 6).
• The total energy of the created electrical 

charges, in the neutron to proton conversion 
in free CL space, is equal to the energy 
equivalence of the newtonian mass change.
The term free CL space is used to emphasize,

that ideal conditions are considered in order to ne-
glect the influence of external gravitational, elec-
tric and magnetic interactions. The formulated

above principle allows to provide a logical expla-
nation of the processes of the neutron-proton and
proton-neutron conversions. (Details are given in
Chapter 6).

As a consequence from the above conclusion it
follows  that a static (not moving) charge could ex-
ists only around a particle, possessing a matter.
Having in mind the energy conservation law and
the analysis of the electron oscillations in CL space
(Chapter 5) we arrive to the following conclusion:
• The electrical field energy of the electron 

(positron) is equal to its mass equivalent 
energy.
This principle will be discussed and proved in

Chapter 3. In the same Chapter it is shown, also,
that:
•  The charge value  of any kind of helical 

structure in CL space, is one and same, equal 
to the charge of the electron (unit charge 
equality principle)

In fact the above principle is well known by
the QED, but BSM is able to explain, why different
size elementary particles have one and a same val-
ue of electrical charge. In Chapter 3 we will see,
that, when the electrical charge is expressed by the
intrinsic CL parameters, the Plank’s constant does
not participate in the expression. Consequently the
unit charge is intrinsic feature of CL space. 

When the process of creation or annihilation of
a static charge does not involves a particle destruc-
tion, the following rule is valid:

In CL space, electrical charges could be
created or annihilated only in pairs.

The latter rule is a result of the intrinsic be-
haviour of the CL space. Knowing, that the electri-
cal charge causes a creation of spatial configuration
of EQs around the FOHS, the sudden appearance of
such domain in CL space, causes an opposite reac-
tion. The space reacts by creation  of opposite
charge. The birth of electrical charge, for example,
may be a result of: unlocking of near field (neutron
- proton conversion); or exiting of some internal
FOHS from the RL(T) hole of external one. But
this two cases do not exhaust all the possibilities.
The processes related with particle destruction
show quite more diversified reactions between the
destructed helical structure and the CL space. This
is due to the complicated interaction that takes
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place between the released internal RL structures
and the CL space.

In case of FOHS destruction, it is possible
one new born charge from destruction of FOHS to
interact with one charge of not destructed FOHS
(case of  and  lepton decay are discussed in
Chapter 6).

2.15.2.2 Physical explanation of the unit charge 
constancy.

The unit charge constancy and some features
of the near locked field  can be explain physically,
when analysing the spatial configuration of the
electrical field lines. Fig.  2.47.A illustrates the
electrical field lines of a single coil FOHS. Two
views are shown. Such structure made by positive
prisms with internal axial core of negative prisms,
really exists. This is the positron.

                         Fig. 2.47A
    Electrical filed lines of single coil FOHS

The internal RL(T) lattice of the electron is
shown as gray shaded in the top view of Fig.
2.47.A. In the same view   the E filed line alignment
to the intercoil zones of the RL(T) is shown. Only
the lines normal to the boundary of RL(T) will

modulate the CL space. Lines exiting from the
RL(T) at angles much smaller than 90 deg (not
shown in the figure) will be locked by the IG (CP)
field of the structure (including the internal RL(T)).
In the bottom view of same figure we see, that
lines, closed to the structure plane are connected
between themselves, despite that the lines are result
of EQs of same handedness. In first gland, the ex-
planation of the proximity connected E lines seems
to contradict the BSM explanation of the E field be-
tween charges of same polarity. Although the
above discussed case is valid only for field lines
generated by a single charge particle, whose
RL(T)s are in synchronization.  In a case of sepa-
rate charge particles the E fields of both parti-
cles are not synchronized, and the EQs of CL
nodes between them could not get adequate syn-
chronization. In the case, shown in Fig. 2.47.A,
the CL node EQs in the proximity are synchro-
nized by one and a same field, induced by the
commonly synchronized internal RL(T). The
proximity synchronization is also facilitated by the
strong IG(CP) field. Due to these two features.
the neighbouring quasispheres of opposite
handedness get induced complimentary motion,
and behave as an opposite quasispheres includ-
ed in the normal E-field lines.

In the same time the proximity connected
lines exit and enter into the RL(T), so they are not
open. Therefore, they could not be able to interact
with external field lines created by another charge
particle. In this case we consider, that these lines
are locked by the IG(CP) field. The energy of the
E-field is part of IG energy balance. But the IG
field of the helical structure in CL space defines si-
multaneously two parameters of the this structure:
the confined shape of the helical structure (the ra-
dius of FOHS envelope and the helical step) and
the balance between the locked and unlocked E
filed lines. Consequently:

The constant value of the electrical charge
of single helical structure in CL space is a result
of self regulating process in which a total IG en-
ergy balance is involved. This balance includes
the internal particle IG energy (of its RL(T) lat-
tice) and the energy of the surrounding CL
space (including ZPE and e-field energy).

The  above made conclusion helps to explain
the following cases:

J/ψ τ
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- the locked near field of the neutron
- the unit charge equality for helical struc-

tures with different size
- the locked near field between two single coil

FOHS’s in superconducting state of the matter 
The last case is discussed in the superconduc-

tivity state of the matter (Chapter 4.). 
If the created E filed lines are completely

symmetrical, then the ability of the IG(CP) field to
lock the whole charge in the near field is stronger.
But if the structure is twisted, this ability is degrad-
ed. When a particle with locked E-filed is in opti-
mal confined motion, the electrical field could
become unlocked. This is the case with the mov-
ing neutron exhibiting a magnetic moment de-
spite its neutrality when it is in rest.

The explanation of the unit charge equality
for structures with different sizes is illustrated by
the Fig. 2.47.B. The figure shows a multiturn struc-
ture, comprising of four turns.

                            Fig. 2.47.B
E field lines of multiturn second order helical

structure

We see, that the multiturn SOHS can be re-
garded as a composed of single coil structures. The
proximity intermediate space between the coils
contains a large number of proximity connected
lines. Adding more single coils makes the proxim-

ity IG(CP) field stronger and more lines are locked
(proximity  connected). Some of the escaped lines
are curved by the IG filed. Only the lines that are
within angle  are able to escape and modulate the
external CL space.  They namely contribute to the
detected external charge. The angle  is one and a
same for any intermediate coil. The angles of the
lines from the two ends have a similar configura-
tion as the single coil structure. Adding more single
coils affects the angle , making it narrower. Larg-
er IG field also curves more lines and makes them
locked in a near field. In result of all this factors,
the charge constancy is preserved. We may con-
clude, that:

The charge constancy is intrinsic feature
of the CL space. It is self regulated by a complex
dynamical balance between the CL space from
one side, and the helical structure with its inter-
nal RL(T), from the other. 

2.16 Confined motion of the helical structures 
in CL space.

Let considering a single coil structure of type
SH1

2:-(+(-) shown in Fig. 2.17.a, moving in CL
space under some electrical force.  This structure
could be regarded also as a cut toroid. We can con-
sider now (and later will be proved) that the toroi-
dal radius is much larger than the node spacing.
The structure have internal RL(T), whose density is
much larger, than CL density. Therefore, the CL
nodes  could not pass (even partially folded)
through the much denser rectangular lattice, so
they will be displaced. Then the motion could be
regarded as a motion in a fluid. It is obvious that the
screw type of motion  will exhibit a smaller resist-
ance. In this case the main resistance is from the ra-
dial sectional area at the helix ends. We may call
this type of motion a confined motion.  A confined
motion with peripheral speed equal to the light ve-
locity is named optimal confined motion. The ax-
ial velocity for optimal confined motion is named
optimal confined velocity and is much lower, than
the peripheral one.

When moving with the optimal confined ve-
locity, the electrical field of the helical structure be-
comes locked in some distance from the external
shell, because the modulation properties of the
RL(T) of the structure could not exceed the speed

θi

θi

θi
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of light. The picture is similar like the electrical
quasispheres in the first harmonic quantum wave.
At this distance a boundary surface is formed. The
quasispheres at the boundary surface and beyond it,
are of magnetic type and are synchronised at SPM
frequency of not disturbed CL nodes. So the mag-
netic quasispheres at  boundary layer serves as a
bearings of the moving helical structure with its lo-
cal electrical field. This situation is illustrated by
Fig. 2.48.

                           Fig. 2.48.
Electrical field in optimal confined motion 
of SH12:-(+(-) helical structure

The helical circumference length is equal to
the helical SPM frequency  of the magnetic
(not disturbed) quasispheres. In such conditions the
structure exhibits an optimal screw like motion
with less resistance. The boundary magnetic radius

, for such motion is defined also by the SPM fre-
quency of the magnetic quasispheres. In the next
chapter we will see, that this helical structure is the
external shell of the electron.

Second order structure with helical shape
also have well defined optimal confined velocity.
The structure could move also with axial velocity
larger than the optimal one (but always smaller
than the speed of light, however, this is not com-
pletely screw type of motion. In the limiting case,
when the linear velocity approaches the light veloc-

ity, the rotational motion tends to zero. In some
conditions (accelerating by magnetic field) such
structure  may even rotate in a reversed direction.

Multiturn second order helical structures, as
those shown in Fig. 2.10 and 2.12, also exhibit con-
fine type of motion. Twisted toroidal structure as
this shown in Fig. 2.18b., will have also a confined
motion, characterized by some equivalent step. The
folded structure, shown in Fig. 2.14.b have also
some equivalent step for confine motion.  The both
structures from Fig. 2.14 however do not exhibit  so
sharp feature of confine motion as the structures
with a helical shape.

For motions in which the peripheral velocity
exceeds the helical light velocity a Cherenkov -
Vavilov type of radiation occurs. In this case the
motion causes generation of shock waves.

So far we have discussed helical structures as
a static combinations of simple structures. Dynam-
ical combinations between some kind of these
structures are also possible. They may interact due
to their electrical and IG fields and may appear
more or less as a stable oscillating system. Dynam-
ical combinations between some structures are
very stable, and may appear externally as neutrals,
despite the fact, that they are composed of struc-
tures possessing a charge. All these combinations
we could classify under the name ordered helical
systems.

One important feature of the ordered helical
systems is that they could be composed by struc-
tures, having different external shape and size, but
possessing equal opposite charges.  For example a
dynamical pair combined of structures shown in
Fig. 2.13.a and 2.14.b, where the size of the second
one is much larger, can appear neutral in the far
field, but not neutral in the near field.  In such case
the electrical field is compensated in the far field.
This kind of charge neutralization in the far field is
possible, if the cycle time of the small particle is
smaller, than the CL relaxation constant. Detailed
description of this process is given in Chapter 6.

We can summarize the dynamical features
of the helical structures and ordered systems by
definition of the following rules: 
• All kind of ordered systems, having external 

helicity or twisting, posses optimal confine 
velocity in CL space

λhSPM

rmb
Copyright  ©  2001, by S. Sarg                                                                                                                                                             2-86



BSM Chapter 2.   Matter, Space and Fields
•  The effect of confined motion for particles 
with external helical shape is much stronger 

• The optimal confine velocity of a second 
order helical structure in a lattice space is 
completely determined by the diameter of 
the helix, the helical step, and the speed of 
light.

• In a normal confine motion the peripheral 
velocity of the helical structure could not 
exceed the light velocity

• The lattice space is able to influence the heli-
cal step of some opened structures when they 
move with higher velocity.

• Charged particles with different sizes, 
involved in common motion, may appear 
neutral in the far field, if the duration of the 
common motion cycle is shorter than the CL 
relaxation time.

2.17 Basic CL space parameters and their con-
nections to some fundamental properties of 
matter
The properties of the ordered helical structures of
primordial matter in CL space, provide a clue for
definition of the basic physical parameters and
properties of the matter we are acquainted with:
time, space, inertia, mass,  light velocity, Zero
Point Energy. Consequently the mentioned above
basic parameters are a not arbitrary, but tightly con-
nected to the property of the intrinsic matter. 

Table 2.12 shows some known fundamen-
tal properties of the matter we are familiar with,
and their connections to  CL space parameters.

                                                              Table 2.12
------------------------------------------------------------------------
     Basic parameter       Defined by CL parameter
-------------------------------------------------------------------------
Space distance:                   node distance, dnb

Time:                                    Cl node NRM period, tR

Inertia:                                 node inertial mass, Eq. (2.61)

Light velocity:                    quantum wave velocity, Eq. (2.39)

Particle mass                     Static CL pressure exercised 
(Neutonian mass)               on the FOHSs volume;

Background temperature:   signature of ZPE of CL space
(CMB)                                    (kinetic type of ZPE)
-------------------------------------------------------------------------
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