BSM Chapter 2. Matter, Space and Fields
2.11 Light velocity in CL space

2.11.1 Energy balance between CP and TP com-
ponents of the NRM vector of CL node

When two systems of matter are involved in
a common oscillation, the time duration of the os-
cillation process is very dependent of their ability
to exchange equal energy momentum. In a com-
mon oscillation system, we may distinguish differ-
ent subsystems by their interactions, even if they
look physically inseparable. In such aspect we may
provide analysis of CL node oscillations, asa proc-
ess in which the following two subsystems are in-
volved:

- Central Part (CP) of the prisms.

- Twisted Part (TP) of the prisms.

Now let applying this kind of separation to
the CL nodes assuming that the prisms properties
of CPand TP IG interactions are transferred to the
CL node properties. Then we may assigned the
mentioned properties to the NRM(CP) vector and
NRM(TP) vector, respectively. Let to find what
are the main distinguishing properties of these two
vectors.

From the previously discussed prisms to
prisms interactions, (more detailed analysis in
Chapter 12) we know, that, the CP of the prism ex-
hibitsalow inertial factor, while the TP hasahigh-
er one. In the node oscillations, the CP is involved
mostly in parallel motions, while the TP in rota-
tional motions. If we consider the complex motion,
of which the two system is involved, we may ex-
pect, that the total interaction factor of the TP is
larger than the total interaction factor of CP. How-
ever, the volume of the TPisabout 10% of the total
volume (for the twisted prism model). Then we
may expect that the following balance is relevant
for a CL space domain:

[Va(CP)] X [Fy(CP)] = [[VA(TP)] X [Fy(TP)]
(2.24A

where: V, - is the node intrinsic matter vol-

ume of the corresponding part
F, - isthe node inertial factor of the
corresponding part

The above relation isonly aguess, that is dif-
ficult to be proved. However its logically possible
existence may provide a key for understanding the
stability of the self sustained cosmic lattice. For
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right and left handed prisms with defined dimen-
sions the relation (2.24A) may be fulfilled at de-
fined node distance.

Another distinguishing feature between CP
and TP interactions is the angular momentum of
the oscillating node.

TheNRM MQ hasfour bumps, indicating the
directions of increased linear momenta. These mo-
menta are same for the neighbouring right and left
handed nodes.

If considering the linear momenta of
NRM(CP) MQ aong the positive and negative di-
rection of any axis passing through the central
point of MEQ, they are equal in the case of:

- the equivalent diametrically opposite mo-
tions during the resonance cycle

- the right and left handed nodes.

If considering the linear momenta of
NRM(TP) MQ along the positive and direction of
asimilar way defined axis, they are different for the
cases of :

- the equivalent diametrically opposite mo-
tions during the resonance cycle

- right handed and left handed nodes

If considering the EQ nodes, the momentum
magnitudesin the orthogonal axes are affected, but
the NRM(CP) and NRM(TP) have similar features
asfor the MQ nodes.

In domains of MQ nodes, the above men-
tioned features contribute to the formation of mag-
netic protodomains. In domains of EQ nodes, the
above mentioned features contribute to the propa-
gation of EM waves. In this case the momentum
possessed by EQs appears as excess momentum.
The |G forces acting on the node in such conditions
are not conservative and the excess momentum is
propagated by abcd axes of the CL nodes, which
are interconnected.

While the CP component of NRM vector is
hidden for electrical and magnetic property, it is
not hidden for the inertial and gravitational mass
properties of the matter. Itisinvolved intherelativ-
istic increase of the body mass, when approaching
the light velocity This tissue is discussed in Chap-
ter 10.

We may conclude that:

» Theé€lectrical, magnetic, and electromagnetic
fieldsin CL space are contributed by the inter-
actionsin which the twisted part of the prisms
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areinvolved. The central parts of the prisms
support the CL structure integrity and its fea
tures are hidden for these fields.

* A stationary EQ node involved in a quantum
wave is not able to keep the excess angular
momentum.

* The excess node momentum is propagated as
EM field dueto the not conservative force
conditions. The energy iscarried by the TP type
of 1G interactions.

» Thecentral part of the prismsis directly
involved in the gravitational and inertial mass
property of the matter.

2.11.2 Momentum propagation in the quantum
wave

2.11.2.1 Excess node energy and corresponding
momentum

Let accepting that the CL node has inertial
mass. Then we may provide a smplified analysis
of the CL node dynamics, regarding it as arotating
mass point around a fixed point, connected to it by
massless rod. For dynamics involving operation of
whole cycles of NRM the full cycle trace could be
replaced by equivalent circle. Then the angular mo-
mentum of the oscillating NRM vector for MQ
node is given by Eq. (2.25).

L = m,ogr2 (2.25)

where: L -isthenodeangular momentum
at the resonance frequency.; m, istheintrinsic iner-
tial mass of the oscillating node; oy IS the reso-
nance frequency;

r -isthe equivalent radius of the node trace
per one resonance cycle

Theinertial mass m,, could be regarded as an
average value of theintrinsic inertial mass of quite
large number of MQ type of nodes. In such case it
obtains very accurate value, depending only of the
node distance. Consequently m, is a constant for
a steady state CL space.

When all CL nodes from a space domain
have a normal ZPE, their angular momentum is
constant. We may call it anormal angular momen-
tum. Such type of node may be included only in
MQ nodes of a quantum wave, but not in the EQ
nodes. The EQ nodes of the quantum wave, obtain
ZPE above E, and their momentum is larger, than
the normal one. In order to preserve thelatticefrom
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destruction, they transfer the excess momentum
very fast. Therefore, the energy transfer could be
expressed by the angular momentum change AL .

2.11.2.2 Energy and resonance period analysis
for MQ and EQ type of node.

Note: In agloba aspect, the CL space is intercon-
nected. Then it contains two types of energy (dis-
cussed in Chapter 5): a connection energy - called
DC type and kinetic (oscillation) energy - called
AC type (like AC current). In a norma not dis-
turbed CL space the DC type of energy is hidden,
while the AC type appears as a ZPE recognized by
the Modern physics. In the following analysis the
AC type of energy isonly considered.

Let making some energy analysis of asingle
CL node. We may simplify the analysis by using a
simple analogical model, whose parameters are
able to represent approximately the dynamics of
CL node. Two classical models could be used: a
three dimensional harmonic oscillator and a coni-
cal pendulum. Here the model of the conical pen-
dulum is used, because it is more convenient for
some illustrations for energy propagation in CL
space.

The conical pendulum may have two types of
motions: circular one and elliptical one. Thecir cu-
lar motion of the pendulum fitsto thetrajectory
of MQ node, while the éliptical motion - to the
trajectory of EQ node. In order to fit the parame-
tersof the conical pendulum, we will usethe equiv-
alence between the node energy and pendulum
energy. More correctly we will use the energy de-
pendence of the displacement from the equilibrium
position.

The node energy in relative units, can be esti-
mated by the return force curve given in Fig. 2.24.
Whilethe equation for this curveis pretty complex,
it isreplaced, by afitted curve, given by the equa-
tion (2.26) and valid only for a displacement range
of: 021<r<06.

Fro = (3025-3.82696 1) (2.26)

where: F - is the normalized return force,
and r is the displacement from the geometrical
equilibrium.

Let considering first the MQ case, corre-
spondingtoacircular pendulum. Inthenodedis-
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placement, the return force is aligned to the axis
passing through the geometrical equilibrium point.
This force is equivalent to the force aligned with
the cenrapetal acceleration. Then the tangential ve-
locity for acircular motion is:

2 rF

v = ret

m

n

Thekinetic energy is:

2 -
M. r(3.025-3.8269¢ ")>
B = 20— =

- (2,26.0)

The plot of the node kinetic energy (in rela-
tive units) in function of the displacement is shown
inFig. 2.43A. Theamplitude of r = 0.39 (calculated
by modelling the ZPE of CL node), corresponds to
adisplacement along xyz axes at normal ZPE.
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Fig. 2.43A
Kinetic energy of the oscillating CL node
(in relative units) in function of node
displacement along xyz axis

The equivalent trace of the oscillating MQ
node has a radius of r = 0.39, corresponding to a
normal ZPE.

Fig. 2.43.B shows the pendulum with its pa-
rameters.

Fig. 2.43.B
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The kinetic energy (E) for a circular pendu-
lum (without friction losses), could be expressed
by the potential energy, dependant on the height
from the central potion, but expressed by the dis-
placement r.

E = mg(l—/12-r2) (2.26.c)

where: m - is the pendulum mass, g - is the
Earth acceleration, | - is the arm length, r - is the
displacement.

In order to fit the equation (2.26.c) to Eq.
2.26.b in alimited range of displacement, we nor-
malizeit to mg and introduce adjustable parameters
a and b, for energy scaling and displacement.

E=[l-J12-r2J]a=b (2.26.d)

where: a - is a scaling parameter, b is dis-
placement parameter.

The Eq. (2.26.d) is suitable for ssimulation of
the MQ node energy, considering a relative dis-
placement up to 0.39 along anyone of the xyz axes.

The plot of Eq. (2.27.d) for | =0.53,a=04
and b = 0.035, for arange 0.2<r<05, iS shown in
Fig. 2.43.C.
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Fig. 2.43.C
Node equivalent energy in function of the
displacement (model by circular conical pen-
dulum)

In case of EQ node, the equivalent trace ob-
tainselliptical shape corresponding to radius larger
than r = 0.39. From the energy plot, shown in Fig
243.A, it is evident, that, for equal deviations
around 0.39, the slope has different steepness.
Then an EQ node with larger eccentricity of the
NRM tracewill havealarger energy. If considering
not equivalent but real trace shape, this difference
is even larger. This case could be analysed by the
model of eliptical conical pendulum. There are
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two important parametersin this case to be consid-
ered: the node inertial mass and the trace length.

The separation of the inertial mass from the
velocity is difficult task, because the inertial mass
may not be constant during the node cycle. For this
reason, we will consider that the nodeinertial mass
isaconstant, only if estimated for afull cycle and
averaged on large number of nodes.

The trace length is important parameter, be-
cause it definesthe duration of the cycle. Having in
mind the influence between the neighbouring
nodes, we may assume, that any node hasatenden-
cy to keep its cycle duration equal to the cycle du-
ration of itsneighbours, so thiswill provideastable
constant value for the period of NRM MQ. Then
the following question is reasonable:

Is it possible the elongated trace of EQ
node to have the same NRM frequency as the
MQ node?

We will try to reply to this question by ana-
lysing the oscillation of the elliptical conical pen-
dulum. Initidly we will estimate the period
dependence of the displacement r. The periods for
acircular conical pendulum T, ad a planar
pendulum T, are given respectively by the equa-
tions (2.26.€) and (2.26.f)

Teon(er) = ZRJE = %(lz_rz)lm (2.26.e)

= on 14 Lgm2(®) s L gr2(®
Toi = 2”[@;(“49” (2)+645m (2))
Using up or down arrow index, for annotation
of the increasing or decreasing of the parameter,

we havethefollowing dependencefromr and e ac-
cording to Egs. (2.26.e) and (2.26.f):

(2.26.f)

Circular pendulum (MQ case): When: r/\ T\ L. /\ (26.9)
Planar pendulum: When: 6/\ T/\ Ly/|\ (2.26.h)

where: Ly and Ly, are the trgjectory lengths for both types
of pendulums, respectively
Now we have to determine, how the period
changes, when the trace becomes elliptical (corre-
sponding to MQ conversion to EQ). This is more
complicated task, but we may simplify it by exam-
ining the two options: acircular pendulum and a
planar pendulum. The planar pendulum could be
regarded as a degenerated circular pendulum for
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very large eccentricity. In such aspect, the men-
tioned two options appear as boundary cases, when
changing the dlipticity. We can formulate the task:
What is the ratio between the periods of the planar
and the conical motions for one and a same pendu-
lum if the trgjectory length in both cases is equal ?
In order to get a simple expression, we will
usethe deviation angle e , knowing that theincreas-
ing of the displacement r leads to increase of o.
Equating the trajectory lengths we get o, = rnsine,.
where: 6, and 6, iSthe angle of the planar and coni-
cal pendulum, respectively. The period of the pla-
nar pendulum for alarge angle is determined by a
sine series. Then we obtain the ratio between the
periods for the planar and the conical pendulum.

T nsine nsing :
Bl - _1 (1 + lsinZ(—z) + gsin“(—z)) (2.26.]
)Tcon /cos6, 4 2 64 2

The source of the return force g disappears
from the period ratio. The plot of the period ratiois
shownin Fig. 2.43.D.
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Fig. 2.43.D

Period ratio between planar and conical
pendulum for equal trajectory lengths

Having in mind, that the planar pendulum is
adegenerated elliptical conical pendulum, it isrea-
sonable to expect, that the period ratio changes a
continuous function between the two pendulum
cases. Consequently, the ratio between the period
of thedliptical conical pendulum and circular con-
ical pendulum will be also a growing function.

Based on the provided analysis by the con-
ical pendulum we arrived to the following con-
clusions:
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The increase of the node energy causes in-
crease of the displacement according to EQq.
(2.26.d).

When considering a MQ node, (circular con-
ical pendulum), the increase of the displacement.
leads to decrease of the period, according to Eq.
(2.26.e). When considering a EQ node, the in-
crease of displacement leads to increase of the pe-
riod, according to the Eq. (2.26.i). Consequently,
the node with excess energy may obtain the same
resonance period asthe normal ZPE node, if itsres-
onance trace has a proper eccentricity and trace
length. Such node could be only a running EQ
node, included in aquantum wave. The condition
of the same resonance frequency between the MQ
and EQ nodes in the quantum wave is very impor-
tant factor for the wavetrain integrity.

The single EQ node could be regarded as a
carrier of a very small fraction of the electrical
charge. The unite charge of asingle charge particle
(electron, positron or any unstable particles) is a
constant due to the I G forces of the particle that in-
fluence the EQ’s. In the same time the |G field as-
sures the equalization of the proper frequencies of
the EQs and their synchronization (by SPM vec-
tor). In such way the charge integrity and aconstant
unite charge are assured.

We can summarise the following conclusions
about the EQ and MQ propertiesin a CL space at
normal ZPE.

* Themain distinguishing featureof theEQ s
that it possesses an excess kinetic ener gy
over thenormal (AC type) ZPE of MQ.

* Thedegreeof the EQ eccentricity isdeter-
mined by the node excess energy. The maxi-
mum value of the eccentricity islimited, due
tothe CL spaceresistanceto destruction
(thisintrinsic property of the CL spaceis
analysed in Chapter 12).

* A gpatial formation of EQ and M Q nodes
possessing one and a same proper resonance
isexpected to be stable.

* TheEQsformingthe E-field of the elemen-
tary particlesare stationary (in respect to
the particle coordinate system). They are
kept by the I G field of the particle.

 The EQsinvolved in thewavetrain of the
guantum wave are of running type.
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While the above made analysis is ssimplified
it is evident that more complicated analysis of the
3D NRM and SPM vectorsis needed. Thisisout of
the scope of the present course of BSM theory. In
the next chapters we may touch this problem
again, becauseit isrelated with number of physical
aspects: the integrity of the quantum wave, the in-
tegrity of the electrical charge around the elemen-
tary particle, the electron motion in quantum loops
in electrical field and so on.

2.11.2.3 Excessmomentum of EQsinvolvedin a
quantum wave. Quasishrink effect of CL space.

In the previous paragraph we saw that thein-
teractions from the (CP) of the prisms do not con-
tribute to the energy of the EM wave. So we will
not take them into account in the provided below
analysis.

In afree space environments, if EQ and MQ
nodes have one and a same NRM frequency, their
SPM frequency should be aso the same. The mod-
ulus of the NRM, however is different for MQ and
EQ nodes. In case of MQ, the NRM vector has a
central point of symmetry for the whole cycle and
exhibits arotational momentum with not linear an-
gular momentum. The rotational momentum con-
tributes to the synchronization of the magnetic
protodomains. In case of EQ, the NRM vector ex-
hibits also a linear momentum, due to the quasi-
sphere polarization (elongation), and simultaneous
rotational momentum. It is evident, that the linear
momentum depends of the degree of EQ polariza-
tion (elongation).

Let consider a CL domain of normal CL
space away from any particle and any external
electrical and magnetic field. In this case the node
inertial mass and the NRM frequency are constant,
so may express the MQ and EQ momentums by
some equivalent common parameters.

Knowing the EQ distribution in the quantum
wave configuration, we may introduce a constant,
that depends only of the distance of the EQ from
the wave axis. It is convenient to introduce multi-
plication factor for the MQ node radius of rotation
inaform: .Jei2 for areason, that will be explained
below. Then the Eq. (2.25) for the angular momen-
tum takes the form
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2

L = mn(nR(r Jg)

where: eis alinear eccentricity of the equiv-
alent elliptical trajectory

From the guantum wave configuration, we
know, that the eccentricity of the EQ is dependent
of the radial distance from the central axis of the
wavetrain. For ahelical tragjectory with constant ra-
dius, the eccentricity e isaconstant. According to
the above analysis, @ is constant for any quantum
wave. We assume also that, the node inertial mass
averaged for one resonance cycle is a constant. For
a given radial distance, the excess node momen-
tum, could be expressed as a change of the angular
momentum. Then differentiating (2.27) onr we ob-
tain the excess node momentum.

AL = m,(@ge)r (2.27.8)

For a neutral quantum wave, r changes from
some initial value r to the boundary radius ry, at
which the eccentricity e of EQ becomes zero (or it
converts to a boundary MQs). Consequently, for
r =r,, AL becomes also zero.

From Eqg. (2.27.a) we see, that the excess mo-
mentum is a product of a constant linear momen-
tum m.r, multiplied by the factor oge. Then the
linear momentum for a constant radius is also a
constant. Assuming a constant node inertial mass
averaged for one resonance cycle, the velocity of
the momentum transfer between the neighbouring
nodes along one helical trgectory is also a con-
Stant.

We may express the equivalent excess mo-
mentum for the radial cross section of the wave-
train, when using the eccentricity e,, corresponding
to one equivalent radial distance rep. Then the
eguivalent excess momentum is:

ALeq = mn(a)Reeq)req

(2.27)

(2.27.b)

If comparing the central point of the EQ node
motion with the Keplerian motion of planetsit is
different. For the oscillating EQ node, the return
forces aong the maor axis are larger than the mi-
nor one and the vel ocity changeis much faster. The
real trajectory shape contributes additionally to this
effect. In the same time the node trgectory could
not obtain very large eccentricity, because the max-
imum and minimum radii of the node trace are re-
stricted within a limited range. This restriction is
imposed by the resistance of the CL structureto de-

Copyright © 2001, by S. Sarg

struction. Therefore, we may expect that maxi-
mum of the IG(TP) field of the prisms
interactions occursin afinite sector of thetrace
around themajor semiaxis. Then thetransfer of
the excess momentum evidently takes place in
that sector. The NRM gquasisphereisaligned to the
xyz axes. Then thetransfer of excessmomentum
could be considered as a vector composed of
components along xyz axes. The actual momen-
tum transfer, in fact is provided by the abcd axes
during the resonance cycle, but thisisnot in contra-
diction with the above made considerations, using
Xyz coordinates.

Thereisone additional feature of the momen-
tum transfer in the quantum wave. The helical tra-
jectories (within the wavetrain) containing EQs
with one and a same eccentricity, can be left hand-
ed or right handed. This obviously must be valid
for a case of polarized and unpolarized quantum
wave.

Let find out what may determine the correct
conditions for the excess momentum transfer?

The motion of every CL nodeinvolved in the
guantum wave, is characterised by both vectors
NRM and SPM. The trajectories of these vectors
are 3 dimensional, and consequently, they posses a
handedness. The handedness momentum of the
SPM vector have much larger weighting factor.
than the NRM momentum. Therefore, it is respon-
sible for keeping the wave handedness. The CL
space provides equal conditions for propagation of
left and right handed wave. Once the quantum
wave is generated and the CL space domain in ho-
mogeneous the handedness is self supported.

The EQ node resonance trajectory and the ex-
cess momentum are illustrated in Fig. 2.44. The
case a. showsthereal NRM tragectory, where1 - is
the zone of the maximum momentum change, and
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2 isthe zone of maximum kinetic energy. The case
b. shows the equivalent ellipse.
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Fig. 2.44

EQ node momentum during the resonance cycle

The maximum linear momentum, shown in
Fig. 2.44 has a direction of y axis. Let assuming
that some external forces, having components only
along +y direction and acting always against the
maximum linear momentum are applied, however,
their magnitudes are smaller. In result of this, the
vector of linear momentum will be affected as
shown in Fig. 2.45, while the energy balance of the
system must be preserved. Its new value of linear
momentum will have a direction at angle respec-
tively to y and z axes (see the explanation below).
This effect exactly appears in the neutral quantum
wave, where the electrical quasispheres are affect-
ed by the Coulomb forces. We may call thisaqua-
sishrink effect of CL space. The term quasishrink
isused, becauseit does not affect the node distance,
but only the components of NRM vector. Fig. 2.45
illustrates how this effect changes the transfer mo-
mentum direction of the oscillating node.
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Fig. 2.45
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Change of the transfer momentum direction
dueto the quasishrink effect of the CL space

In case a. the equivalent momentum is
shown without the quasishrink effect. In case b.
the quasishrink effect of the space is provided by
the Coulomb forces F.. The energy for this forces
is taken from the total momentum of the quantum
wave and more accurately from its twisting fea-
tures. In result of this, the apparent NRM momen-
tum aong axis y is reduced, but an equivalent
momentum Py, appears at angle in respect to the E
direction. In fact, if considering the point position
of the CL nodein the wavetrain, the direction of Py,
coincides with the tangent of the helical trace pass-
ing through this point. One of the components of
P, provides the balance between the Coulomb
forces F; and centripetal acceleration, while the
other one, P, provides the velocity for the energy
propagation in direction Z. If conditions for not
conserved angular momentum for the considered
CL node exist, the new component of the linear
momentum will be propagated between the neigh-
bouring nodes.

The induced Coulomb forces are moving
with the running EQs. They are responsible for
keeping a finite transverse width of the quantum
wave, in order to assure the boundary conditions.
They assure also the transversal compactness of the
quantum wave by narrowing the radial energy dis-
tribution, as was discussed in § 2.9.4.4. According
to that analysis, the most suitable width was esti-
mated to bein order of 51 = a/16. During the de-
tection process, however, the Coulomb forces are
destroyed and the transverse width appears as
Ax = 8. Thisvalue matcheswell with the relation
between, ¢, u, , ¢,, h, intheexpressions, derivedin
the next paragraphs.

2.11.3 Light velocity equation and relation
between the CL space parametersand the fun-
damental physical constants.

It was assumed in the previous paragraphs,
that the energy between neighbouring nodes is
transmitted per one resonance cycle. Then the
change of the axial momentum and its components
P, and P, can be expressed by number of reso-
nance cycles. This will greatly facilitates the deri-
vation of the light equation. Having in mind the
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configuration of the quantum wave, we may aso
simplify the task by analysing the vector of the run-
ning EQ node.

Fig. 2.46 illustrates the orientation of the
running EQ, where: A - isa 3D view showing two
consecutive positions of the running EQ; B - isa
view showing the helical path and EQ in a perpen-
dicular plane; C - aview of thetwo positions of EQ
in another plane. Any running EQ node at distance
Ry, from the axis Z will have constant momentum
components P, and P, for an instant time. If con-
sidering consecutive time points, separated at time
distance of t,, the running node will pass a curve
linear distance d,, along the helical trajectory.

Fig. 2.46
Momentum propagation expressed by a run-
ning EQ through a helical trajectory

The long axis of the running EQ is always
normal to the axis of propagation Z, whileits centre
isat distance R;,. Thevectorsfrom Vi, to Vi, arethe
tangent momentum velocities of the oscillating
node. The change of the angular momentum due to
the Coulomb forcesin discussed in §2.11.2.3 (hav-
ing someradia gradient in the quantum wavetrain)
provides a velocity component for moving the EQ
in ahelical trgjectory instead of straightforward. If
referencing to the laboratory rest frame the V, ve-
locity will contain an advancing velocity compo-
nent aligned to the direction of the quantum wave
propagation. For this reason Vi, is shown larger
than V3. The advancing velocity component could
betrandlated to the central point of the quasisphere,
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because it is always paralldl to the Z axis. View B
showsthat the vel ocity V; has one and same magni-
tude for the tangential axis and the Z axis, because
of the circular symmetry of the electrical quasi-
sphere in this plane. We have aright to apply this
consideration, because the momentum transfer oc-
CuUrs per one resonance cycle.

For the running EQ, the NRM vector carries
an energy momentum along the helical trace,
which we may call ahelical momentum

by = My, (2.28)

where: py, isahelical momentum (momentum
along the helical trace), v, isahelical component
of velocity, m,, isanodeinertial mass.

The defined helical momentum does not need
to be compensated for a centripetal acceleration,
becauseit isaready compensating by the Coulomb
forcesand thelattice quasi shrink effect. Therefore,
thetotal helical momentum from all EQscarriesall
the photon energy. For ssimplification of the analy-
siswe may consider the total photon energy is car-
ies by an equivalent helica momentum of one
equivalent EQ at equivalent radius from the central
axis of the wavetrain.

Knowing that the integrity of the propagated
gquantum wave is preserved, we have to find the
corresponding velocity, v,, in a straight direction
along Z axis. There is one important consider a-
tion: the excess momentum is propagated by the
right and left handed nodes, which interact between
themselves. In such case, the quantum wave mo-
mentum could not be considered as a sum from the
right and left handed nodes momentums. The same
consideration is valid for the propagation velocity,
of the photon. According to the present concept of
Modern Physics this velocity carry the whole
“photon mass’. In order to comply to this consider-
ation, but using the presented concept and having
in mind the complimentary interactions between
theright and |eft handed CL nodes, the propagation
velocity could be regarded as a square root of the
product from the right and left handed velocity
contributions.

c = foru (2.29)

where: ¢ - is the light velocity (propagation
velocity), vgand v, are respectively the linear ve-
locity components contributed by the right and left
handed nodes.
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Considering the integrity of thewhole E-field
of the quantum wave, we can replace theradial en-
ergy distribution whose shapeisshowninFig. 2.38
by a rectangular function having the same area.
Then the sum of theindividual NRM vectors at one
moment will be replaced by one equivalent NRM
vector, corresponding to equivaent electrical qua-
sisphere at a radial distance corresponding to the
half maximum of the radial E-field. The equivalent
helical path can be defined by aradial distance at
half maximum equal to s» (see Fig. 2.38). Asare-
sult, we may relate the energy properties of the in-
dividual running EQ, but via some equivalent EQ
located at equivalent radial distance from the cen-
tral axis of the wavetrain.

The introduced equivalent EQ will carry
the whole ener gy of the guantum wave (photon)
whilemoving through an equivalent helical path
centred around the direction of the quantum
wave propagation.

Let estimating the components vy and v, by
the division of the equivalent helical path, on the
time for this path. We may use the first harmonic
wave, for simplicity, and to show later that the re-
sult isvalid for al harmonics. Knowing that in the
Earth local field v, = v, we may use the Comp-
ton parametersfor the SPM vector. Then the equiv-
alent helical path for one SPM cycleis

7‘he = kckhe (230)
Kne = /1 +4m2(8M/A,)2 (2.31)

where: ki, - is the coefficient for the equivalent
helical path

Applying the Eq. (2.30) for the boundary ra-
dius we have:

A = Acknp

where

ky, = 4 -istheboundary coefficient accord-
ing to Eq. (2.20.9):

Without confusing with the node distance of
CL, that is a constant, in order to distinguish the
calculated distances for both helical traces, we will
use the distances: dy,, - corresponding to boundary
path (the helical path at the boundary radius, where
MQs form the boundary conditions of the wave-
train) and d, - corresponding to the equivalent
path (the helical path at the equivalent radius valid
for the equivaent quasisphere, defined above and
carrying the total photon energy).

(2.31.9)
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Fig. 2.47.a shows the resonance traces for
magnetic and electrical quasisphere respectively.
Fig. 2.47.b shows the same traces, but presented as
equivalent circles (for simplification of the follow-
ing analysis). Let expressing the node distances d,y,
and dp,e by their equivalent radii ry, and rge, which
are shown in the same figure. We may accept, that
the following ratio is valid:

r

=}

e

(2.33)

r

nb_k
4 = “rd
dnb

o

ne

Assuming that the energy is transferred be-
tween the neighbouring nodes per one resonance
cycle we can write:

khe = NRane (234)

where: Nrq is the number of resonance cy-
cles per one SPM MQ cycle.

The Compton time t; is related to the node
resonance time according to the relation:

t, = tgNg (2.35)
Then the resonance frequency is
Vi = VeNgo (2.36)

where: N, - isthe number of resonance cy-
clesin one SPM MQ cycle (must not be confused
with cycles per second).
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Fig. 2.47
Trace projections of resonance cycles (a.) and their
equivalent presentations (b.)
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It is evident, that the following relations are
valid.

wg = 2mvg = %:f = 2V Ngq

(2.37)

The momentum velocity projection on the Z
axis can be estimated by the path along Z axis per
one SPM cycle, that isequal to 1. Therefore, the
light velocity component, contributed by the right
handed nodesis:

7‘c xhe dne — "me®Rr

Vg = — = = =
t. tkie tRKhe 2Tk ok

(2.38)

e rd

If using not the first harmonic, but any sub-
harmonic, the Eq. (2.37) gives the same result (be-
cause A, and t, get multiplication by one and a
same number). The velocity component, contribut-
ed by theleft handed nodes v, isasameas v, Then
according to (2.29), the equation for the light ve-
locity is

2 n2
Me®R - 0‘)Rdnb
212 |2

4T5 krdkhe anhb

The Eq. (2.39) is not till in final form. Al-
though it will help us to identify the relation be-
tween the well known parameters of the physical
vacuum (permeability and permittivity) and the CL
Space parameters. Substituting ¢ in Eq. (2.39) with

(2.39)

(ye,) "% and rasing on square we get
_ 4n?kE ke s
Moo = —5 5 = (2.39)
ne™R m

The dimensions of the expression (2.39) are
easily determined, having in mind the expression
(2.37). Now the task is to find the expressions of
the separate parameters of the product. The simple
separation of the parametersin two terms could not
givethe correct result, because p, and e, may con-
tain common parameters, that are eliminated in
their product. However, we may guess what are the
eliminated parameters, by examining the dimen-
sions of u, and e,. Working in SI system, we can
mani pul ated the dimensions of the u e, product, by
eliminating the common dimensions, until obtain-
ing the dimensions of Eq. (2.39).

() = a2

Eliminated dimensionsfor p: (Az%z) (2.41)

(2.40)
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Eliminated dimensionsfor e,: (2

Some eliminated parameters that are dimen-
sionsless are not directly apparent. Some other pa-
rameters, as the electron charge, for example, are
defined at specia conditions.

From dimensiona expression (2.40) we see,
that some mass should participate in p, and e,
while it is eliminated in their product. Let for this
reason we multiply the nominator and denominator
of Egq. (2.39) by the mass parameter m,,. The cor-
rectness of the obtained expression will be verified
later. Then providing aproper grouping in brackets
we get:

2 2
U, = 47Tkrdmn I(he
o Nro N2v.m rZ og

c'''n'ne

(2.42)

We will see later that my, is a constant. Then
all the parametersin the left bracket are constants,
not depending on the energy of the propagated
wave. Theterm 4n/Ng,, also could be regarded asa
solid angle corresponding to one resonance cycle .
It isadynamica parameter of NRM vector imple-
mented in the SPM vector which forms the MQ.
Consequently the left bracket shows features indi-
cating that it corresponds to . Then the right
bracket should be the expression for ¢,. The latter
could be presented also as:

2
— khe

0~ 2vaD) (2.43)

where: AL - istheangular momentum change
of NRM vector, i. e. the momentum that carriesthe
energy. This momentum multiplied by the number
of SPM cyclesin all wavetrain will give the total
energy.

We haveto find what isthe reaction of the CL
space to disturbance pulse with infinite small dura-
tion. The response of such disturbance will be
equal to the relaxation time constant. The relaxa-
tion time constant will likely define the transition
envelope of the photon wave at the start. A more
detailed discussion of the relaxation time constant,
later referenced al so as a space-time constant of CL
space is given in 82.13.A. Its apriopry accepted
theoretical valueis:

to, = QVEJ = 2426x10°%  (SeC)

C

(2.44)
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Due to the space-time considerations of the
relaxation time constant the light velocity put in
brackets is used as a dimensionsless factor. This
consideration is later used in Chapter 3 for defini-
tion of Dynamic CL pressure which is used suc-
cessfully in Chapter 5 for derivation of the
background temperature of CL space asasignature
of the Zero Point Energy, a well known parameter
in Modern Physics.

Wewill use the equivalence between the first
harmonic energy (511 keV) and the electron mass
inorder to determine the m,,. parameter. In Chapter
3 the charge to mass equivalence principle also will
be explained. Applying this principle, we can esti-
mate the inertial node mass by the equation:

(2.45)

For this reason we need to estimate the
number of involved nodes, from the expression:
No of nodes = [(photon volume)/(node cell vol-
ume)] (2.46) The node cell volume should be de-
termined from the boundary conditions:
Anp = Ap/NRo -

In order to estimate the volume we need the
wavetrain length. Thisisin fact a length, that
could be practically measured by Michelson inter-
ferometer with adjusted path length. The maximum
path length at which the interferogramis still pos-
sible will providethislength that we may call a co-
herent length.

The coherent length 1, and coherent <,
time are related by the ssmple relation:

leoh = CTeoh (2.46.9)

The coherencetime could be considered as
the elapsed time, between the front and back
end of the passing quantum wave, measur ed by
a stationary observer.

The coherent times for a monochromatic
thermal source and for lasers are very different. In
our case we will consider only the first one. For
best monochromatic thermal sources the coherent
timeisin order of 108 sec.

Notes:

(a) The above definitions of acoherent length
ant time are for a not correlated single photon.
They should not be confused with the coherent
length and time parameters of the lasers, where the
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photons are correlated by time (time instant of
emission) and space (mutual spatial interactions).

(b). We should not confuse the coherence
time with the detection time. The latter is much
smaller, because, the photoelectron in the detec-
tion process appears after all wavetrain energy
istransferred tothedetector. The detection proc-
essin fact follows the end of the wavetrain.

If considering the relaxation constant as a
transition time, the transition length 1,, of the wave-
trainis:

l,, = cte, (2.46.b)

The estimation of the coherent time or length
for a single 511 keV gamma photon is a difficult
task. For this reason we will use the CL pumping
time for generation of this quantum wave. It is
equal to the lifetime of the parapositronium 1'Sg
(p-Ps). (Thisisdiscussed in Chapter 3). Itsvauein
vacuum is 125 psec. Here we will assumethat the
pumping time is equal to the coherence timein
thiscase.

Accordingto Eq. (2.46.a) and (2.46.b) thera-
tio between the coherent and transition length of
the wavetrain is

_ 125x10°"
tC L

Ky = 5152 (2.47)
The total wavetrain length is t., k,c, Whileits
cross sectional area, defined by the boundary radi-
us of a2 is n(rs22 (0.50 is used instead of
0.6164)\, because of possible EQ slope change near
the boundary). Then the volume of the wavetrain
can be expressed as.
n(c)cgkd

v (kC)Zt k
=5 ) ek = 5
2 4 Vg

(2.47.9)

Substituting the volume from Eq. (2.47.a) in
Eq. (2.46) and dividing the total mass of 511 keV
by the number of nodes, we get the equation of the
node inertial mass m,,, expressed by the CL pa-
rameters.

3
m = ek,

3 (2.48)
The node inertial mass, m,,, could be regard-
ed as an equivalent parameter. Thisis because the
CL node distance defines the boundary of the dis-
tance scale in CL space, so the inertial properties
we are familiar with are valid only for larger dis-
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tances than this one. The equivalent node inertial
mass, however, isuseful for finding the relation be-
tween the intrinsic CL space parameters and the
fundamental physical constants.

The parameters i, and ¢, in system Sl arees-
timated by using the Coulomb unit of the charge.
However the terms of Eq. (2.42) are more conven-
ient to be referenced to the charge of the electron.
Then the following expressions are valid:

By = 4nx 107 (N) = ( N ) - referenced to Coulomb

A2) "~ \ceg?
Hoe = (”—g) - referenced to electron chargeq  (2.49)
q
g, = 3.854x10 - referenced to Coulomb
€oe = €02 - referenced to electron chargeq  (2.50)

Applying some substitutions in the second
term of Eq. (2.42), and referencing to the electron
charge we obtain:

_ (4rm, kr2d Nro
Hoefoe = N 2 2
RQ \4nm.c K 4

From the dimensional Eq. (2.41) we identify
the eliminated parametersfor

(Azisz) ” ((qtﬁ)cztij

Thereasontouse 1, and t, in the guessed pa-
rametersisthat they are the basic parameters of the
SPM effect, which is responsible for the constant
light velocity. Multiplying the left term of the
bracket of (2.50) by the eliminated parameters ac-
cording to Eq. (2.51) and by ¢? according to
Eq(2.49), we get the final equation for y, .

(2.50)

(2.51)

2 3
_ 4mm K 4CV,

Ho (2.52)

Nro
In a similar way the final equation for ¢, is
obtained.

e = _NF@_
4 33,2
M, V.C K4

If knowing the factor k,q we can determine
the parameter Nrq, and consequently the reso-
nance frequency of the CL node. The factor kg

given by Eq. (2.33) could be approximately esti-

(2.53)
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mated by the return forces plot of the node dis-
placement, shown in Fig. 2.24 in Chapter 2. From
this figure the node displacements along abcd and
Xyz axes are respectively: 0.2 and 0.4 values, nor-
malised to the dg,.q, Which is the node distance
along one of the abcd axes. Then the average dis-
placement, r iS: r=05(0.4+0.2)dy,.q = 0.3dgcq

For avalueof k4 = 0.15, weget thefollowing
results for the Cosmic Lattice:

Ngro = 0.88431155x10” - number of resonance (2.54)

cyclesfor one SPM cycle
Vg = 1.092646x10% (H2) - noderesonancefrequency (2.55)

d., = 1.0975x10°%° (m) - CL unitecell size (dlong xyz
nb
axes) at boundary (2.56)

—66

m, = 6.94991x10 (kg) - CL unit cell inertial mass (2.57)

Note: v, isvalid for xyz CL unit cell and node res-
onance frequency, while d,,, and m, are defined for
CL unit cells only. For approximate calculations,
m,, could be considered valid for asingle CL node,
because any CL xyz cell includes sharing nodes
from the neighbouring cell.

From eg. (2.48) we can directly express the
Plank’s constant by others fundamental constants
and CL node parameters.

_ n(c)czmnNsRde
4Vckﬁb
where: (c) - isalight velocity as adimensions-
less factor.
kg - 1S a dimensiongless factor given by Eq.
(2.47)
The unit electron charge expressed by CL
Space parametersis:

(Nmys) (2.58)

2
q=Ro | % ] (2.58.3)
2vE N 2K ke
Summary and conclusions:

e Theintroduced parameter of node inertial mass
allowsto find the relation between the CL
space parameters to the fundamental physical
constants.
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» The CL node parameters. the node distance, the
proper resonance time and the inertial mass are
the three basic parameters defining respectively
the space, the time and the inertial property of
the macroworld of the elementary particles.

» The weak dependence of the node distance by
the gravitational field of the matter (Newtonian
gravitation) causes a small change of the CL
gpace parameters. Thisis behind the General
Relativity effects, observed in the macro world
scale.

» Therelativistic properties affect directly the
guantum motion of the electron.

Detailed analysis of the quantum motion of

the electron is provided in Chapter 3.

2.12 Rdation between theintrinsic and the
inertial mass of the CL node.

The inertial factor defined by the EQ. (2.6.8)
is aratio between the interaction energy and aver-
age gravitational energy.

The CL node interaction energy isin fact the
kinetic energy of the node oscillations. The node
moment of inertiais m r2, so theinteraction energy
is:

E = 3
IR

The average gravitational energy, can be ex-
pressed as a gravitational potential between two
neighbouring node. In fact every node, regarded as
a central one, has 4 neighbours (connected along
the abcd axes), so we may consider that the central
node interacts with 1/4 of every neighbouring
nodes. In such case, the magnitude of the gravita-
tional potential could be regarded as between two
nodes at distance of d, defined for abcd axes. This
potential is obtainable by integrating on a distance
the |G forces between two nodes in avoid space.

(2.59)

— Godmr%o - Godmr%o
Eig = | o= = (2.60)
where: G, - IS a gravitational constant in

empty space between the two deferent types of in-
trinsic matter; my, - is the intrinsic mass of the
node, (averaged between the right and left handed
nodes); d - is the node distance along abcd axes.
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Substituting (2.59) and (2.60) in Eq. (2.6.9)
and having in mind that d = d.,/3, we get the ex-
pression of the inertial node mass.

2 2
_ 91EtrGogM

no 2.61
i, (260

where: | isthe intrinsic inertial factor of the
CL node

The inertial factor is a function of the node
shape, the node distance d,,,, and the resonance time
tr.

From equation (2.61) we see that for CL
spaces with different node distances, the parame-
ters, affecting theinertial node massare: 1, t;, and
d., - All other parameters are constants.

2.12.A. Plank’s constant estimated by the
parameters of theintrinsic matter and the CL
Space

Substituting m,, from (2.61) in (2.58), we get
for the Plank’ s constant:

h = ganNéQGodmﬁokd
80 pknokeg

Note: Thedimension of God isnot equivalent
to the dimension of G (universal gravitation con-
stant). Thisis because Gyq isinvolved in 1G equa-
tion, where the distance participates in a cubic
power instead of square). For this reason, in order
to avoid any confusion in the analysisin BSM a Sl
systems of unitsis always used.

The Equation (2.62) could be useful for esti-
mation of the quantum energy exchange between
two different gravitational fields. Thisisaproblem
that isrelated to the General relativity. For thisrea-
son the inertial factor I, however, is necessary to
be analysed. This is a complicated task, requiring
number of unknowns, so it is not discussed in the
present course of the BSM theory.

(2.62)

2.13 Physical meaning of the Planck’s constant,
by using the basic parameters of CL space.

The physical meaning of the Planck’s con-
stant appears more apparent if using the basic pa-
rameters of the CL space.

Analysing e, by Eq. (2.43) we see that the
term AL has the same dimensions as the Planck’s
constant: (m?kg sec). Then the product v.AL havea
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dimensions of energy. We see also, that the expres-
sion (2.58) that we derived for the Planck’s con-
stant, contains v, in the denominator. |If
multiplying this equation by thefirst SPM harmon-
ic frequency v., we obtain hvq = 511 (Kev) (divi-
sion on electron charge provides energy in (eV).
This energy value is equivalent to a integral mo-
mentum change of the CL nodes, when afirst har-
monic wave is propagated. Following the same
logic we may apply thisfor n-th subharmonic. The
frequency of the n-th subharmonic quantum
wave (photon) isequal tothe SPM frequency di-
vided on n. Then the photon energy is

Eph = (first harmonic energy) xn = (first harmonicenergy)v

VC
(2.63)
where: v - is photon frequency
The Eq. (2.58) could be presented also as a
torque at SPM (Compton) frequency.

h = Torque kg m? (2.64)
Ve Hz
where: 20 W8k
Torque = TL(E)—C——;——M (2.65)

hb

Consequently the Plank’s constant could be
regarded as a specific torque, measured at the SPM
frequency. In such caseit isexpressed only by the
CL space parameters.

The Equations (2.64) and (2.65) provide use-
ful link for estimation of the Plank’s constant by
the Compton frequency, which is experimentally
determined value of the SPM frequency. The
Compton frequency (discovered by the great amer-
ica physicists Compton) is simultaneously the first
proper frequency of the oscillating electron.

The obtained expression of the Planck’s con-
stant gives a possibility to estimate not only the
guantum wave features of CL space, but also to
find its basic parameters. the static and the dy-
namic pressur e. Thesetwo parametersare directly
related to the following physical parametersand re-
lations:

- the Neutonian (apparent) mass of the atomic
particle and macrobodiesin CL space

- the energy balance between ZPE of CL
gpace and the minimum kinetic energy of the ele-
mentary particles
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The determination of the static and dynamic

pressure is discussed in Chapter 3.

We can summarize that:

* ThePlank’s constant expressesthe equiva-
lent angular momentum change of all electri-
cal quasispheresfor afirst harmonic
quantum wave.

» ThePlank constant can be measured asa
specific torqueresistance, at the SPM fre-
quency.

2.13.A. Zero Point Energy uniformity and CL
space relaxation time constant

The measurable parameter of the ZPE (AC
type) according to BSM is the temperature, esti-
mated by the Cosmic Microwave Background
(CMB). We may call it a CL background tempera-
ture. The BSM theory shows the relation between
the background temperature, the proton volume
and the ideal gas constant. Chapter 5 provides the-
oretical estimation of the background temperature
obtaining aresult, that differsonly by 0.06 K. from
the measured temperature by the CMB method. In
the calculations, the CL space-time constant isused
in a sense of relaxation time, characterizing some
fluctuations of CL domains, responsible for ZPE
uniformity of CL space. These fluctuations are
very low energy waves, related with spontaneous
creations and destructions of magnetic protodo-
mains with length of whole number of Compton
lengths. Such fluctuations are called Zero Point
Waves (introduced by BSM). The energy of these
waves is very low and they are not possible to be
detected directly. Although very rarefied gas sub-
stances and especially the Hydrogen, distributed in
the space, obtain dynamical equilibrium. Then the
ZPE of the space is estimated indirectly by the
emission spectrum of these atoms and especially
the Hydrogen. Without the existence of the zero
point waves, the uniformity of the Cosmic back-
ground temperature is not possible to be explained.
Thereisquitelogical consideration, that the av-
erage time of the magnetic protodomains re-
combination is equal to the relaxation time
constant of CL space.

The CL relaxation constant, perhaps is in-
volved also, in the transition process of the wave-
train formation. For this reason this constant was,
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also, used in Egs. (2.47) and (2.48) for determina-
tion of the node inertial mass.

There is one value of the relaxation constant,
asatheoretical guess, that fitswell to the equations
used in BSM. It isdefined by the expression.

to, = 9 = 2426x1077 sec

Ve

(2.66)

where: (c) isalight velocity used as adimen-
siongess factor.

The use of the light velocity as a dimensions-
lessfactor in (2.66) comply with the adopted space-
time consideration particularly, assuming that at
such motion the electron oscillation, for example,
must be stopped. Thisisatheoretical consideration
only because at relativistic velocity the quantumin-
teraction efficiency is decreased, while the massis
increased. At particular velocity, for example a
synchrotron radiation effect of the electron beam
takes place.

The value of the relaxation constant given by
Eq. (2.66) is valid only in Sl units. This does not
mean that the relaxation constant is dependent of
the system unit of measurement. Thisis easy to be
proved by checking the dimensions identity.

(€) _ (m/sec) _
T (m) (2.66.9)
(©) _(emx100)/%0) _ (cmy100=(m)  (2.66.b)

\% 1/sec

c

The dimensional equation (2.66.a) isfor a Sl
measurement system, where, the length unitis1 m.
The equation (2.66.b) isfor ameasurement system,
where the unit length is 1 cm. From the two equa-
tionswe see, that ther elaxation time could not be
considered as an absolute parameter, but a
space- time parameter of CL space.

The reciprocal of the relaxation time appears
as arelaxation frequency parameter. Itsvalueis:

Yo = 410148x10"  [HZ]
(©)

Both the time relaxation constant and the re-
laxation frequency are parameters of the zero point
wave. These waves are responsible for equalizing
the ZPE of CL domains. In such aspect they areim-
portant real parameters. In Chapter 3, the relaxation
frequency is used to define the dynamical pressure
of CL space.

(2.66.0)
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The relaxation time constant is defined only
for motion event in CL space and isdirectly related
to the light velocity according to Eq. (2.66). For
this reason it is more appropriate to be caled a
space-time constant. This definition isin closer re-
lation to the space-time concept of the physical
vacuum.

2.13.B. Fundamental time based constants and
their connectionsto the levels of matter organi-
sation

Some of the fundamental constant are given
in frequency, othersin time units. In order to make
comparison we may regard the periods of some
fundamental frequencies as a time constant and v.
S. versa. In such aspect we may express the periods
of the CL node resonance frequency t, and the
SPM (Compton) frequency t.as atime constants.

One fundamental time constant, that we may
useisthe Plank’stime, for which thereisnot so far
aphysical explanation. It is given by the equation:

ty = |2 = 530x10™* (sec)
2nc

where: G - isthe universal gravitational con-
Stant

Comparing to the other time constants, the
Plank’s time is the smallest one. Let to use the re-
ciprocal value of these time constants, and express
them as frequencies. The parameters t; and t, are
related with periodical oscillations. Then the
Planck’ s time might be also a parameter of period-
ical oscillations. The value of the three frequencies
aregivenin Table 2.2

(2.67)

Levels of matter organization Table: 2.2

Level Time  Frequency, v In(v)  Typeof oscilla-
X (sec) (H2) tion
0 539E-44  1.855E43 99.629
1
2  9.152E-30 1.0926E29 66.86  CL resonance
3 8.093E-21 1.236E20 46.26  SPM, Electron

If drawing afitted linefunction of In(v) vsthe
“Level” number we see that the line become pretty
close to arobust line if one level of matter organi-
zation ismissing. Thislevel isidentified as alevel
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1in Table 2.2. (The possibility of such level isdis-
cussed in Chapter 12 Cosmology).

Fig. 2.74A shows a plot of In(v) versus the
level of matter organization , x.

1 2 3

Lewel of matter organisation (%)

Fig. 10.1

The CL space exists in 2 and 3 level of the
matter organisation, but not in level 0 or 1.

The very steep falling trend (having in mind
the logarithmic scale) might be explained by the
change of the inertial factor of the structures corre-
sponding to the particular level of the matter organ-
ization. We see that the relation between the trend
and the inertial factor (defined in Chapter 2) fol-
lows the rule: alarger inertia factor - alower fre-
guency. Then we come to alogical conclusion that
the level zero should correspond to a matter organ-
isation with a smallest inertial factor. For now, we
may accept that this level corresponds to the bulk
primordial matter. Although, in Chapter 12 (Cos-
mology) we will see that it could be attributed to
the a simplest material structure that possess oscil-
lation properties.

It has been mentioned. in number of para-
graphsfrom the previous analysis, that theintrinsic
matter should have itstime constant. In such aspect
we may accept that:

» ThePlank’stimeisprobably the mean value
of the time constants of the both substances
of intrinsic matter from which the prisms
arebuilt.

The obtained relation between the fundamen-
tal time constants and inferred guess about the
Plank’ stime could put more light about the proper-
ties of the intrinsic matter. It may, also, help to un-
derstand the very basic fundamenta law - the law
of intrinsic gravitation.

Copyright © 2001, by S. Sarg

2.14. Basic measur able parameters of the CL
space.

The cosmic lattice is able to occupy a defi-
nite volume in empty space without need of bound-
ary conditions.

Static pressure of CL space

When a complex helical structureis put in
CL space, the CL nodes are displaced only by the
volume of the first order helical structure, because
this volume is occupied by RL, which has much
larger stiffness. When such structure is in motion,
the CL node fold, deviate, pass, and restore their
positions, so they passes through the stronger local
field of the structure, but not through the volume of
its FOHS. Consequently, for any complex helical
structure, the CL space could exercise a pressure
only onits FOHS's. We call this parameter astatic
CL pressure. When the structureisin motion, the
CL space behaves partially as areal gas and partly
as an ideal gas for FOHS's. The latter state is due
to the electrical and magnetic fields.

Dynamic pressure of CL space

The CL space exercisesforces on the enve-
lopes of the helical structure (the proton, for exam-
ple) in form of Zero Order Waves. The reason, that
these forces are exercised on the envel opes, but not
only on the more dens FOHSs, is that the wave-
length of these waves is much longer, than the fine
geometrical parameters of the FOHSs. As aresult,
the external shell of the proton feels a dynamic
pressure exercised by the smallest waves of the
CL space - the Zero Point waves. It isan alter-
native type of pressure with frequency equal to
the recombination frequency of the magnetic
protodomains. (reciprocal to the CL relaxation
constant).

The static pressure gives a possibility to
formul ate the apparent mass of the elementary par-
ticles, made of helical structures. The dynamic
pressure helps to estimate the energy equilibrium
between the CL space and the atoms.

The static and dynamic pressure are both
measurable parameters. Their values are deter-
mined in Chapter 3, where the mass equation is de-
rived.
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Background temperature of CL space

Another important parameter of the CL
space is the Zero Point Energy (ZPE) (dynamic
type or AC). Its measurable parameter is the CL
gpace background temperature. According to
BSM, the cosmic microwave background radiation
is the background temperature of the deep space. It
isformed by the the emission from atoms and mol-
ecules in the deep space, as they are in dynamical
equilibrium with the ZPE of the space. The back-
ground temperature of the Earth local field can be
calculated by using the universal gas constant, the
static CL pressure and the proton dimensions. Its
value is calculated in Chapter 5. It appears about
0.07 K higher than the measured CMB from the
deep space, but this is reasonable (see the discus-
sion in Chapter 5).

Thebasic parametersof theCL spaceare
the following:

- resonance time: t,, (corresponding to the
proper resonance frequency of the CL node, vg;

- SPM freguency vg,,,, (Compton frequen-
cy for Earth gravitational field v, );

- number of resonance cycles per one SPM
cycle: Ngo;

- light velocity (for quantum wave propaga-
tion): c;

- static pressure; Pg;

- dynamic pressure: P,

- apparent mass of particle of helical struc-
tures (in CL space only): m;

- node inertial mass: m,;

- background temperature parameter of
ZPE: Tgg

- relaxation time constant of CL space: t.,

- Palnk’s constant: h

- unit electrical charge: q

Some of the derived basic equations (see
Chapter 3) expressed directly by the CL parameters
are the following:

The static CL pressure, when using the
SPM (Compton) frequency is.
2h 4 1- 2
pg = SN0 [N [(353)]

o C

where: o - isthe fine structure constant; ge is
the gyromagnetic factor of the electron

Copyright © 2001, by S. Sarg

The static CL pressure, when using the CL
resonance parametersis:

_ hgg(1-a®)vekey

Ps [(3.54)]

N
nazNéQdib [;2}

where: d,, - isthe node distance in xyz axes
of the node coordination system

k., - IS the quantum wave boundary con-
dition factor, given by Eq (2.20.):
Koo = /1+4712(0.61642) = 4,

0.6164 - isafactor complying to the Rayleigh
criterion

The dynamic CL pressureis:

_ gehng/ 1-0o?

3
2mo.c

The newtonian mass of any particle of heli-
cal structuresin CL space is determined by the
volume of its FOHSs. The mass equation allows
to calculate the newtonian mass of the atomic par-
ticles, if the configuration of their helical struc-
tures are known.

Po [(3.62)]

2, 4 2
m= L0y k]

o C

[(8.57)]

where: V - is the volume of the FOHS's in-
cluded in the particle
Note: If afirst order positive structure is in-
cluded in first order negative one, the external vol-
ume only should be considered.
The inertial mass of the oscillating nodeiis:
o Ahveky,
" RO Ngoks
where: (c) - is the light velocity as a dimen-
siongless factor
kq - Isafactor given by Eq. (2.47).
The light velocity by the resonance CL pa-
rametersis:

[kal (2.73)

- (’)Rdnb - VRdnb
21k, Knb

(2.75)

where: oy - isthe resonance angular frequen-
cy; d., and k,, - are respectively the node distance
and the boundary factor for a quantum wave.

Zero Point Energy discussed above, has its

measurable parameter: a temperature back-
ground. Its value for a deep space is provided by
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the Cosmic Microwave Background. In the local
field the temperature background can be calculat-
ed. Thisis demonstrated in Chapter 5.

The current model of BSM theory, provides
the following estimates for some of the CL space
parameters:

_ 9
NRQ = 0.88431155x10

tg = 9152003x10°° [seC] vy = 1.092646x10”° [HZ]

m, = 6.94991x10°°  [Kg]
Pg = 1.373581x10% [ﬁJ
m2
Pp = 2025786x10° |- |
m2Hz
d,, = 1.0975x10° [m] - node distance along xyz

axes

d,,~d /2 = 054876x10°[m] node distance aong
abcd axes

2.15. Gravitational law in CL space

Thegravitational law in CL spaceisthe New-
ton’suniversal law of gravitation. Why the inverse
power of 3 law in empty space becomes inverse
power of 2 law in CL space?

The answer of this question is not simple
enough, in order to be provided in this chapter. But
some useful consideration, related with this aspect
are the following:

a. A unit volume of cosmic lattice around a
massive object has a specific weight.

b. For the first order structures, the cosmic
lattice behaves as a rea gas at constant tempera-
ture, defined by the ZPE.

c. When a particle, (comprised of huge
number of helical structures with different spatial
arrangement and dynamics) is in a gravitational
field of a massive body it feels an attractive force,
that is defined by the Newton’s law of gravitation.

d. The gravitational forces acting on the heli-
cal structures are propagated by the central part of
the prisms.

e. Thelattice pressure around the mass object
isdlightly higher than in the open space. The mac-
robodies, however, in comparison to the first order
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helical structures are very rarefied. For this reason
the effect of the space shrink (CL node distance) is
very weak.

The feature c. may lead to the following con-
clusions:

1) The gravitational forces defined by the
Newton’slaw of gravitation aremanifestation of
theintrinsic gravitational forcesin CL spaceen-
vironment.

2) The gravitation is not defined by the
node resonance frequency and consequently of
thelight velocity.

The provided above logical considerations
leads to a conclusion, that the Newtonian gravita-
tion is a propagation of the Intrinsic Gravitation in
conditions of CL space environment. While the
propagation of the |G field between prismsthat are
not in motion could be quite fast its propagation
through the oscillating CL nodes might be delayed
and limited by the oscillation period of NRM. This
IS so, because the proper resonance frequency is
much smaller than the Planck frequency (or thefre-
guency of the envisioned level 1 of the matter or-
ganization as shown in Table 2.2). This envision
may not seem enough convincing here, but it is
supported by the later analysis and especialy by
the analysis of some observational datain Chapter
12.

2.15.0. Mass - energy - charge equivalence prin-
ciple.

The matter and mass are quite different cate-
gories according to BSM. The matter we are famil-
iar with, appears as a Newtonian mass. The
intrinsic and the Newtonian mass are different at-
tributes of the matter. For simplicity we may refer-
ence to the Newtonian mass as an apparent mass
(or smpleamass), and to theintrinsic massasalG
or intrinsic mass. The principle of mass-energy-
charge equivalence, discussed below is valid only
for the particles exhibiting apparent (Newtonian)
mass in CL space.

2.15.1 Mass-ener gy equivalence

The mass - energy equivalence, according to
BSM, uses the Einstein’s equation E = mc2, but
with aremark, that theintrinsic matter does not dis-
appear, when the apparent mass vanishes. Instead
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of that, the matter undergoes one of the two types
of conversion:

- the matter becomes hidden as a whole heli-
cal structure;

- the matter is disintegrated into prisms and
RL nodes that finally may recombine into CL
nodes.

The both processes are related with energy
release, but the prisms are unchanged. The BSM
theory shows that, there is not annihilation of the
matter at all, even at the temperature of the nuclear
fusion and the high energy cosmological phenom-
enathat are directly detected.

2.15.2 Energy equivalence principlefor the
electrical charge and charge unit equality

2.15.2.1 Considerations and principles

The static electrical charge could be regarded
asakind of energy distributed in form of electrical
field around the particle. Indeed, the electrical qua-
sispheres around the particle contain larger energy,
than the magnetic quasi spheres. In Chapter 6 it will
be discussed, that the neutron to proton conversion
is related with creation of pair charges. one static
and one dynamic as a quasi particle wave. The pro-
ton gets mass deficiency, becauseitstoroidal shape
is twisted. In this process the internal rectangular
lattices (RL) of all FOHSs get partialy twisting,
which leadsto asmall volume shrinkage. The ener-
gy equivalence of this volume shrinkage according
to the mass equation is equivalent to the sum of the
energies of the static charge and the quasiparticle
wave. The both are reaction of CL spacein order to
preserve the energy balance.

Then applying the energy conservation law,
the charge-energy equivalence principle can befor-
mulated. Instead of universal formulation, which
requires mentioning of lot of conditions, we can
reference the principle to the neutron - proton con-
version process (see details in Chapter 6).

» Thetotal energy of the created electrical
charges, in the neutron to proton conversion
in free CL space, isequal to the energy
equivalence of the newtonian mass change.

The term free CL space is used to emphasize,
that ideal conditions are considered in order to ne-
glect the influence of external gravitational, elec-
tric and magnetic interactions. The formulated
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above principle alows to provide a logical expla-

nation of the processes of the neutron-proton and

proton-neutron conversions. (Details are given in

Chapter 6).

As a conseguence from the above conclusion it
follows that a static (not moving) charge could ex-
ists only around a particle, possessing a matter.
Having in mind the energy conservation law and
the analysis of the electron oscillationsin CL space
(Chapter 5) we arrive to the following conclusion:
» Theéelectrical field energy of the electron

(positron) isequal to its mass equivalent
energy.

This principle will be discussed and proved in
Chapter 3. In the same Chapter it is shown, also,
that:

» Thechargevalue of any kind of helical
structurein CL space, isoneand same, equal
to the charge of the electron (unit charge
equality principle)

In fact the above principle is well known by
the QED, but BSM isableto explain, why different
size elementary particles have one and a same val-
ue of electrical charge. In Chapter 3 we will see,
that, when the electrical charge is expressed by the
intrinsic CL parameters, the Plank’ s constant does
not participate in the expression. Consequently the
unit charge isintrinsic feature of CL space.

When the process of creation or annihilation of
a static charge does not involves a particle destruc-
tion, the following ruleisvalid:

In CL space, eectrical charges could be
created or annihilated only in pairs.

The latter rule is a result of the intrinsic be-
haviour of the CL space. Knowing, that the el ectri-
cal charge causesacreation of spatial configuration
of EQsaround the FOHS, the sudden appearance of
such domain in CL space, causes an opposite reac-
tion. The space reacts by creation of opposite
charge. The birth of electrical charge, for example,
may be aresult of: unlocking of near field (neutron
- proton conversion); or exiting of some internal
FOHS from the RL(T) hole of external one. But
this two cases do not exhaust all the possibilities.
The processes related with particle destruction
show quite more diversified reactions between the
destructed helical structure and the CL space. This
is due to the complicated interaction that takes

2-83



BSM Chapter 2. Matter, Space and Fields

place between the released internal RL structures
and the CL space.

In case of FOHS destruction, it is possible
one new born charge from destruction of FOHS to
interact with one charge of not destructed FOHS
(case of Jy and t lepton decay are discussed in
Chapter 6).

2.15.2.2 Physical explanation of the unit charge
constancy.

The unit charge constancy and some features
of the near locked field can be explain physically,
when analysing the spatial configuration of the
electrical field lines. Fig. 2.47.A illustrates the
electrical field lines of a single coil FOHS. Two
views are shown. Such structure made by positive
prisms with internal axial core of negative prisms,
really exists. Thisisthe positron.

L A
Vg £ M
e, AA

Fig. 2.47A
Electrical filed lines of single coil FOHS

The internal RL(T) lattice of the electron is
shown as gray shaded in the top view of Fig.
2.47.A.Inthesameview theEfiledlinealignment
to the intercoil zones of the RL(T) is shown. Only
the lines normal to the boundary of RL(T) will
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modulate the CL space. Lines exiting from the
RL(T) at angles much smaller than 90 deg (not
shown in the figure) will be locked by the IG (CP)
field of the structure (including theinternal RL(T)).
In the bottom view of same figure we see, that
lines, closed to the structure plane are connected
between themselves, despitethat the linesareresult
of EQs of same handedness. In first gland, the ex-
planation of the proximity connected E lines seems
to contradict the BSM explanation of the E field be-
tween charges of same polarity. Although the
above discussed case is valid only for field lines
generated by a single charge particle, whose
RL(T)sarein synchronization. In a case of sepa-
rate charge particles the E fields of both parti-
cles are not synchronized, and the EQs of CL
nodes between them could not get adequate syn-
chronization. In the case, shown in Fig. 2.47.A,
the CL node EQsin the proximity are synchro-
nized by one and a same field, induced by the
commonly synchronized internal RL(T). The
proximity synchronization is also facilitated by the
strong IG(CP) field. Due to these two features.
the neighbouring quasispheres of opposite
handedness get induced complimentary motion,
and behave as an opposite quasispheres includ-
ed in thenormal E-field lines.

In the same time the proximity connected
lines exit and enter into the RL(T), so they are not
open. Therefore, they could not be able to interact
with external field lines created by another charge
particle. In this case we consider, that these lines
are locked by the IG(CP) field. The energy of the
E-field is part of IG energy balance. But the I1G
field of the helical structurein CL space defines si-
multaneously two parameters of the this structure:
the confined shape of the helical structure (the ra-
dius of FOHS envelope and the helical step) and
the balance between the locked and unlocked E
filed lines. Consequently:

The constant value of the electrical charge
of single helical structurein CL spaceisaresult
of self regulating processin which atotal 1G en-
ergy balance is involved. This balance includes
theinternal particle| G energy (of itsRL(T) lat-
tice) and the energy of the surrounding CL
space (including ZPE and e-field energy).

The above made conclusion helps to explain
the following cases:
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- the locked near field of the neutron

- the unit charge equality for helical struc-
tures with different size

- thelocked near field between two single coil
FOHS' s in superconducting state of the matter

Thelast caseisdiscussed in the superconduc-
tivity state of the matter (Chapter 4.).

If the created E filed lines are completely
symmetrical, then the ability of the IG(CP) field to
lock the whole charge in the near field is stronger.
But if the structure istwisted, this ability is degrad-
ed. When a particle with locked E-filed isin opti-
mal confined motion, the electrical field could
become unlocked. Thisisthe case with the mov-
ing neutron exhibiting a magnetic moment de-
spiteitsneutrality when it isin rest.

The explanation of the unit charge equality
for structures with different sizes is illustrated by
theFig. 2.47.B. Thefigure showsamultiturn struc-
ture, comprising of four turns.

Second Order Hellical Structure

i
=i h'\\'\\\'\;—' -
TN T

AR
prozumity locked
field lines

.
Pt

Fig. 2.47.B
E field lines of multiturn second order helical
structure

We see, that the multiturn SOHS can be re-
garded as acomposed of single coil structures. The
proximity intermediate space between the coils
contains a large number of proximity connected
lines. Adding more single coils makes the proxim-
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ity IG(CP) field stronger and more lines are locked
(proximity connected). Some of the escaped lines
are curved by the I1G filed. Only the lines that are
within angle o, are able to escape and modulate the
external CL space. They namely contribute to the
detected external charge. Theangle ¢, isone and a
same for any intermediate coil. The angles of the
lines from the two ends have a similar configura-
tion asthe single coil structure. Adding moresingle
coilsaffectstheangle o;, making it narrower. Larg-
er IG field aso curves more lines and makes them
locked in a near field. In result of al this factors,
the charge constancy is preserved. We may con-
clude, that:

The charge constancy is intrinsic feature
of the CL space. It isself regulated by a complex
dynamical balance between the CL space from
oneside, and the helical structurewith itsinter-
nal RL(T), from the other.

2.16 Confined motion of the helical structures
in CL space.

Let considering asingle coil structure of type
SH,%-(+(-) shown in Fig. 2.17.a, moving in CL
space under some electrical force. This structure
could be regarded also as a cut toroid. We can con-
sider now (and later will be proved) that the toroi-
dal radius is much larger than the node spacing.
Thestructure haveinternal RL(T), whosedensity is
much larger, than CL density. Therefore, the CL
nodes could not pass (even partialy folded)
through the much denser rectangular lattice, so
they will be displaced. Then the motion could be
regarded asamotioninafluid. It isobviousthat the
screw type of motion will exhibit a smaller resist-
ance. Inthiscasethe main resistanceisfromthera-
dial sectiona area at the helix ends. We may call
thistype of motion aconfined motion. A confined
motion with peripheral speed equal to the light ve-
locity is named optimal confined motion. The ax-
ial velocity for optimal confined motion is named
optimal confined velocity and is much lower, than
the peripheral one.

When moving with the optimal confined ve-
locity, theelectrical field of the helical structure be-
comes locked in some distance from the external
shell, because the modulation properties of the
RL(T) of the structure could not exceed the speed
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of light. The picture is similar like the electrical
guasispheres in the first harmonic quantum wave.
At this distance a boundary surface isformed. The
guasi spheres at the boundary surface and beyond it,
are of magnetic type and are synchronised at SPM
frequency of not disturbed CL nodes. So the mag-
netic quasispheres at boundary layer serves as a
bearings of the moving helical structure with itslo-
cal electrical field. This situation is illustrated by
Fig. 2.48.
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Fig. 2.48.
Electrical field in optimal confined motion
of SH12:-(+(-) helical structure

The helical circumference length is equal to
the helical SPM frequency Ao, Of the magnetic
(not disturbed) quasispheres. In such conditionsthe
structure exhibits an optimal screw like motion
with lessresistance. The boundary magnetic radius
rmp » 1Or SUCh motion isdefined also by the SPM fre-
guency of the magnetic quasispheres. In the next
chapter we will see, that thishelical structureisthe
external shell of the electron.

Second order structure with helical shape
also have well defined optimal confined velocity.
The structure could move also with axial velocity
larger than the optimal one (but aways smaller
than the speed of light, however, this is not com-
pletely screw type of motion. In the limiting case,
when thelinear velocity approachesthelight veloc-
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ity, the rotational motion tends to zero. In some
conditions (accelerating by magnetic field) such
structure may even rotate in areversed direction.

Multiturn second order helical structures, as
those showninFig. 2.10 and 2.12, also exhibit con-
fine type of motion. Twisted toroidal structure as
thisshown in Fig. 2.18b., will have al'so a confined
motion, characterized by some equivalent step. The
folded structure, shown in Fig. 2.14.b have adso
some equivalent step for confine motion. The both
structuresfrom Fig. 2.14 however do not exhibit so
sharp feature of confine motion as the structures
with ahelical shape.

For motions in which the peripheral velocity
exceeds the helical light velocity a Cherenkov -
Vavilov type of radiation occurs. In this case the
motion causes generation of shock waves.

So far we have discussed helical structures as
astatic combinations of ssimple structures. Dynam-
ical combinations between some kind of these
structures are al'so possible. They may interact due
to their electrical and 1G fields and may appear
more or |ess as a stable oscillating system. Dynam-
ical combinations between some structures are
very stable, and may appear externally as neutrals,
despite the fact, that they are composed of struc-
tures possessing a charge. All these combinations
we could classify under the name ordered helical
systems.

One important feature of the ordered helical
systems is that they could be composed by struc-
tures, having different external shape and size, but
possessing equal opposite charges. For example a
dynamical pair combined of structures shown in
Fig. 2.13.aand 2.14.b, where the size of the second
one is much larger, can appear neutral in the far
field, but not neutral in the near field. In such case
the electrical field is compensated in the far field.
Thiskind of charge neutralization in the far field is
possible, if the cycle time of the small particle is
smaller, than the CL relaxation constant. Detailed
description of this processis given in Chapter 6.

We can summarizethe dynamical features
of the helical structuresand ordered systems by
definition of the following rules:

» All kind of ordered systems, having external
helicity or twisting, posses optimal confine
velocity in CL space
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The effect of confined motion for particles

with external helical shape is much stronger

» Theoptimal confine velocity of a second
order helical structurein alattice spaceis
completely determined by the diameter of
the helix, the helical step, and the speed of
light.

* Inanormal confine motion the peripheral
velocity of the helical structure could not
exceed thelight velocity

» Thelattice spaceisableto influencethe heli-
cal step of some opened structureswhen they
move with higher velocity.

* Charged particleswith different sizes,

involved in common motion, may appear

neutral in thefar field, if theduration of the
common motion cycleisshorter than the CL
relaxation time.

2.17 Basic CL space parametersand their con-
nectionsto some fundamental properties of
matter

The properties of the ordered helical structures of
primordial matter in CL space, provide a clue for
definition of the basic physical parameters and
properties of the matter we are acquainted with:
time, space, inertia, mass, light velocity, Zero
Point Energy. Consequently the mentioned above
basic parametersare anot arbitrary, but tightly con-
nected to the property of the intrinsic matter.
Table 2.12 shows some known fundamen-
tal propertiesof thematter wearefamiliar with,
and their connectionsto CL space parameters.
Table2.12

Basic parameter Defined by CL parameter

Space distance: node distance, d,

Time: Cl node NRM period, tg
Inertia: nodeinertial mass, Eq. (2.61)
Light velocity: gquantum wavevelocity, Eqg. (2.39)
Particle mass Static CL pressure exercised
(Neutonian mass) on the FOHSsvolume;

Background temperature: signature of ZPE of CL space
(CMB) (Kinetic type of ZPE)
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