
BSM Chapter 3    Electron system (electron)
Chapter 3. Structure and physical 
parameters of the electron

The electron and positron appear to be the
smallest stable elementary particles possessing an
elementary charge. The electron is a compound
system, consisting of three helical structures and
possessing two proper frequencies (while the free
positron possesses only one).  Investigating the be-
haviour of the electron we may understand the
complex interaction processes between helical
structures in the CL space. In the same time the
electron may play a role of a test probe for estima-
tion of the basic CL space parameters. Due to its
complex structure it is referenced in some places as
“electron system”.

3.1 Electron structure and basic features.

3.1.1 Structure configuration
The electron is a compound helical structure

of type: , so it is composed of three single
coil helical structures.

The configuration of the electron was already
shown in Fig. 2.13 a.  In Fig. 3.1 a sketch of the
electron is shown and the basic dimensions are de-
noted by letters. We will use this notations later in
order to determine the physical dimensions of the
electron components. 

                            Fig. 3.1
        Sketch of the electron’s structure 

The electron consists of an external negative
shell and an internal positive shell with a core. Both
shells include a helix as a boundary enclosing inter-
nal RL(T) structures. The positive shell with a core
is the positron (Fig. 2.13.c). The intrinsic gravita-
tion of the electron is not strong enough in order to
keep the twisted IG field locked. So the CL space
disturbance propagates in a far field, i. e. the sys-

tem exhibits a charge. The external E-filed lines
were shown in Fig. 2.47A and discussed in
§2.15.2.2. The electron has two internal rectangu-
lar lattices of twisted type (RL(T)). The external
helical shell serves as a boundary of the negative
RL(T), while the positron helical shell - a boundary
of  the positive RL(T). Due to a different helicity
the both RL(T) practically are not connected. This
is illustrated by Fig. 3.1.A.

                               Fig. 3.1.A
          Layers of both internal RL(T) structures
 of the electron

Figure 3.1.A shows only the radial layers
connecting to the boundary helical cores. The layer
1 (negative) is connected to the external shell,
while the layer 2 (positive) - to the positron helical
shell. The intermediate radial layers (between the
helical coils) are not shown, but they follow the
same helical configuration. Their axial configura-
tion was already shown in Fig.  2.16.b and 2.18.b.
The negative central core with thickness of 3
prisms diameter, is positioned along the axis of the
trapping hole. It is evident, that the interaction be-
tween IG(CP) of the two RL(T) is minimized due
to the following two features:

- concentric symmetry
- helicity mismatch (between the right and

left helicity of the both RL(T)s).
The shown configuration allows a  free axial

motion of the positron inside of the external nega-
tive shell. At the same time, the helicity mismatch

H1
2: -(+(-)
Copyright  ©  2001, by S. Sarg                                                                                                                                                               3-1



BSM Chapter 3    Electron system (electron)
and the self adjusted concentric symmetry, provide
conditions of ideal bearing. A similar freedom and
motion conditions possesses the negative core in-
side the trapping hole of the positive RL(T). 

In some conditions of extremely high veloci-
ty, or operation in low ZPE CL space domain, the
electron may lose its internal positron and convert
to a degenerated electron. The degenerated electron
is shown respectively in (Fig. 2.13.b)  

It is more difficult for the positron to loose its
central core, because it is very thin (3 prisms diam-
eters) and its interaction with the external CL space
is much weaker. The degenerated electron or
positron, however, preserve their internal RL(T),
and consequently their dimensions and second or-
der helicity. These features allows them to recom-
bine again in a normal electron. If the central core
is lost, it could be regenerated by the trapping
mechanism, from negative CL nodes. The oscilla-
tion is illustrated by Fig. 3.2.

 

                             Fig. 3.2
               Oscillating electron

We can distinguish two simple oscillation
systems: “electron shell - positron”, and “positron
shell - central core”. As a result, the electron oscil-
lates in a complex way. It is evident, that every one
simple system has its own proper resonance fre-
quency. 

3.1.2 Proper frequency of the oscillating system 
“electron shell - positron”.

Let analyse, first, the system “electron shell -
positron”, in order to determine what kind of fac-
tors define the proper resonance frequency. 

From a first gland, the resonance frequency
should depend on two types of interaction forces:
the intrinsic gravitation between the electron and
positron from one side, and the interaction between
the EM field of the system and NRM and SPM vec-
tors of CL space, from the other. The IG (CP) field
between the electron shell and the positron is spa-
tially structured by their RL(T). The both lattices
although have opposite handedness and the radial
stripes meet themselves at angle, which is in the
range between 170 and 150 deg (see Fig. 3.1.A).
This angle is determined by the radius to helical
step ratio of the electron structure as a single coil
SOHS. When the system oscillates with its proper
frequency (Compton frequency), the individual
vectors of the both type radial stripes meet them-
selves for a very short time. Having in mind, that
the calculated xyz node distance of CL space was in
the order of  , and the central
axes of the electron is , we estimate that a sim-
ple cell from a positive RL(T) could be aligned at a
single cell of a negative RL(T) for a time no longer
than 1E-40 sec. The prism diameter is at least 12
times smaller than the minimal node distance of
RL. So the time during which the radial stripes be-
tween both RL(T) may appear aligned is extremely
short and the IG interaction between both RL(T)s
may not take place. This means that the IG field is
not able to propagate between the two RL(T) lattic-
es. As a result of this, the gravitational mass of
the positron with its RL(T) appears hidden for
the external observer. The positron E filed is
propagated by the RL(T). When the positron is in-
side the electron, its positive field could not pass
through the RL(T) of the electron shell, because of
the different handedness. So the E filed of the
positron in this case also appears hidden. 

Let analyse now the IG field leaking between
the nodes. If the electron overall shape, for exam-
ple was not a coil but straight compound FOHS, the
leaking IG field would be different for a case when
the positron is inside, and when part of it is outside
of the electron’s shell. But for the coil shape as
shown in Fig. 5.1 the partially coming out positron
core does not go away from the electron’s shell.
Hence, the returned forces for this kind of shape
will be significantly reduced.

From the considerations, discussed above, we
may accept that the resonance frequency of the

dnb 1.0975 20–×10   (m)=
2πRc
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electron depends mostly on the EM interaction
with the Cosmic Lattice. This conclusion will be-
come more more apparent in the next chapters of
BSM.

 When the electron oscillates, a portion of a
positive charge alternatively appears on both sides
of the electron. The interaction of this charges with
the lattice in fact  influences the motion of the
whole electron system.

The dependence of the electron resonance
frequency from the CL space features at different
ZPE complicates the analysis. However, when con-
sidering its motion in CL space of normal ZPE and
constant node distance, the analysis is simplified,
and the electron resonance frequency can be con-
sidered very stable. In this and following chapters,
we will see, that in all cases of photons generation
and detection, the electron system is involved.

The quantum feature of the electron could not
be explained if it is considered only as a passive
system. The electron self-energy is a discussed top-
ic, now, in the modern physics. Some quantum
processes without such energy could not be ex-
plained. The BSM model of the electron shows that
it  has the ability to store energy. We can distin-
guish two different energy “reservoirs”, capable to
store kinetic energy. The first one is the oscillation
energy between electron’s negative RL(T) lattice
and the internal positron. The second one (much
smaller) is the oscillation energy between the
positron positive RL(T) lattice and the central neg-
ative core.

The total kinetic energy of the oscillating
electron interacts directly with the CL space envi-
ronment by inertial and EM fields.

 Experimental evidence exists about the abil-
ity of the electron to accumulate energy after it has
been dumped. Such conditions are created in ex-
periments observing the transition between the nor-
mal and the superconductivity state of the matter.

The superconductivity will be discussed in
details in Chapter 4. Here only some features will
be mentioned. In the superconductivity state of the
matter, where CL domains possess a ZPE energy,
the positron could come out and can be attracted
externally to the electron shell. In conditions of low
ZPE, the internal energy stored in the RL(T) can be
dumped. When the ZPE is gradually rasing to a
normal value, the electron system recombines, but

it needs to restore its lost energy. So if the conduc-
tor temperature is elevating slowly, the electron
heat capacity exhibits a peak. The peak, known as
electronic specific heat coefficient is clearly ob-
servable in the experiments. Figure 3.3 demon-
strates this feature for one type of superconductor
(BSM interpretation). 

 

                              Fig. 3.3
Specific electronic heat coefficient in
function of the superconductor temperature
(Plot data from of J. W. Loram et al., 1997)

According to BSM theory, however, not all
the energy of the specific heat goes for refilling the
electron self energy. Part of it goes to refill the ZPE
of the domains inside the conductor. 

When the electron is in motion, driven by ex-
ternal field, it oscillates and automatically keeps its
internal energy at nominal value. If the electron has
a very low velocity (approaching zero), then the
stored energy is still able to modulate the CL space,
causing an electrical field. The stored energy pro-
vides momentum, which keeps the two subsystems
in continuous motion. So this energy is very impor-
tant factor, influencing the system behaviour in a
CL space.

Analysing the dynamics of the electron-
positron oscillations we see that: When the positron
is inside of the electron shell, the field of its
RL(TP) is completely shielded, so it could not ex-
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hibit a static charge. When it is oscillating, howev-
er, conditions for charge appearance occur
periodically from both ends of the electron shell.
The oscillating “electron - positron”  system inter-
acts with the CL nodes, which are congregated in
magnetic protodomains, synchronised by the SPM
frequency. In such aspect, the SPM frequency ap-
pears a quite strong factor. In Chapter 2 we saw,
that it is responsible for the quantum waves. It is
enough strong factor able to affect the oacillational
motion of the “electron - positron” system. The
most important common feature between the CL
space parameters and the electron is:
• The first proper frequency of the electron 

system (electron shell - positron) is equal to 
the CL node SPM frequency. In the Earth 
gravitational field these two frequencies are 
equal to the Compton frequency.

• The above feature means that the energy of 
the oscillating electron system is supplied 
directly by the CL space ZPE via resonance 
transfer.  Consequently, in CL space envi-
ronments,  the energy reservoir of electron 
system is always filled up.

Let imagine that an electron is put in a CL
space with constant spatial and time parameters,
but away from any gravitational or EM field.  We
may call such a system a fundamental oscillator
and may use one of its parameter, namely the first
proper frequency as a stabilized frequency etalon.
Its period could serve as a time base for investi-
gation of the interaction between the helical struc-
tures and the CL space, so the CL space parameters
to be estimated quantitatively. We may call the fre-
quency of such electron a fundamental frequen-
cy. Despite the fact that it is not a primary
frequency etalon (as we will see in Chapter 12) it is
quite convenient for exploring the CL space param-
eters.

The proper frequency of such system is equal
to the SPM frequency of the CL node, which is
equal to the well known Compton frequency (valid
for the Earth gravitational field). 

                                       (3.1)
where:  - is the proper frequency of the

electron shell - positron,  -is the Compton fre-
quency

The relation (3.1) will become more apparent
through the course of the BSM theory.

The Compton frequency is estimated by the
Compton wavelength:                      (3.1.a)

 where:  - is a Compton wavelength, c - is
the light velocity

 It is known (from all physical courses) that
the Compton wavelength is given by Eqs. (5.1):

   m                   (3.1.b)

where:  h - is the Plank’s constant
           me - is the mass of the electron
The fundamental frequency appears more

general parameter, than the Compton one. The fun-
damental frequency was defined for electron in CL
space away from heavy objects, while the Compton
frequency is measured in the Earth gravitational
field. Secondly, the electron mass is involved in the
determination of the Compton frequency. The mass
of  the charged particles may have  mass deficien-
cy, due to the charge potential field in CL space,  in
comparison with the neutral particle (as the neu-
tron). This possibility, however, is not enough in-
vestigated in BSM theory and we will rely on the
estimated Compton frequency. Despite the fact,
that the Compton frequency is estimated in the
Earth gravitational field, we will use it instead of
the fundamental frequency. For the purpose of
our analysis we will accept that the above de-
fined fundamental frequency is equal to the
Compton frequency and the fundamental peri-
od is equal to the Compton time.

     Hz                   (3.2)
  sec                (3.3)

From the provided so far analysis, we may
summarize the basic features of the electron: 
• In CL space with normal ZPE, the electron

possesses internal stored energy. This energy
keeps the oscillations of the electron subsys-
tems.

• The electron obtains a proper resonance fre-
quency equal to the SPM frequency of the
CL space. 

• The adjustment of the electron proper fre-
quency to the SPM one, may provide expla-
nation of one of the effects of the General
relativity: the gravitational redshift of pho-
tons emitted in a strong gravitational field.

νep νSPM νc= =
νep

νc

νc c/λc=
λc

λc
h

mec
--------- 2.4263 10 12–×= =

νo νc≈ 1.23559 10 20–×=

tc
1
νo
----- 1

νc
-----≈ 8.0933 10 21–×= =
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3.1.3 Proper frequency of the oscillating system 
“positron-central core”.

The  proper resonance frequency of the
“positron - central core” system appears different
from the first proper frequency of the electron due
to its different volume and core dimensions.

When the positron is free (outside of electron
shell), its behaviour is similar as the oscillation
system: “electron shell - positron” Its proper fre-
quency, however, is different, due to its  different
external environments. The behaviour of the free
positron will be discussed in §3.9.3. It will be
shown, that the  positron - core proper frequency is
related to the Compton frequency by the simple
expression: 

    - for free positron            (3.3.a)
where:  - is the proper frequency of the

system positron- - central core.
Additional difference appears for oscillations

with small and large amplitudes, when the
positron is inside of the electron shell. These fea-
tures are discussed in §3.5, §3.9.3 and in Chapter
4. The proper frequencies for smaller and larger
amplitudes are the following:

 - for positron inside of the electron    (3.3.b)
                    (small amplitudes)

 - for positron inside of the electron   (3.3.c)
                        (large amplitudes)

The proper frequency of the positron inside the
electron in a case of large amplitudes is the same
as the proper frequency of the free positron. This
conclusion will become more evident in the course
of the BSM theory.

3.2 Electron oscillations  and lattice pumping
effect leading to a photon emission.  “Annihila-
tion” or  change of state of the matter. 

We can distinguish two types of electron fre-
quency oscillations: weak (small amplitudes of os-
cillation) and strong (large amplitudes). 

Oscillations with weak amplitudes appear,
when the electron is forced to move in the lattice
space. The amplitude is much smaller than 180 deg
deviation of the positron in comparison to the elec-
tron shell. It does not lead to generation of EM

wave (photon). The oscillations have small ampli-
tude, induced between the interaction of the elec-
tron proper frequency and the SPM frequencies of
the CL nodes. The positron in the activated electron
oscillates reversibly around the middle position.
When a portion of the positron goes out it is not any
more shielded by the electron external shell and
portion of positive charges appear periodically in
both sides. The invoked alternative field interacts
with the external negative field created by the elec-
tron shell, while the latter interacts with the CL
space. The electron  in this case induces waves in
CL space. The interaction between the induced
waves and SPM frequency of CL domains exhibits
a quantum effect. Its features  are discussed later in
this Chapter.

In the strong amplitude oscillations, the am-
plitude may reach 180 deg and over. So this type of
oscillation may lead to a separation of the positron
from electron system or recombination, as well.
Such separation or recombination is always  ac-
companied with absorption or emission of high en-
ergy photons. Oscillations with strong amplitudes
appear in many observed physical phenomena:
electron - positron “annihilation”; 1‘So singlet of
parapositronium activated by different methods: by
X or gamma rays, by bremshtrahlung, by high en-
ergy electron or positrons and so on. It could be ac-
tivated also by a collision of accelerated electron to
a target or a collision with a high energy particle,
including a quasiparticle wave. All these processes
are related with emission of two or three gamma
photons, depending of the amount of activated en-
ergy.  Let analyse the dynamical behaviour of the
energy activated electron, leading to emission of
two gamma photons. 

We can analyse the example of interaction
between a normal electron and a positron. They
may have initial velocities or may start from rest. In
both cases they will have different potential ener-
gies. Let assuming that the potential energy (equal
to the energy of activation) is equal to 511 keV.
When the both system accelerated by the attractive
Coulomb forces approach each other, the external
positron will be directed (by the interacted proxim-
ity electrical fields) to enter into the electron sys-
tem and to replace the internal positron. Although
its energy does not permit to expel the internal
positron completely. As a result, the both positrons

νpc 2νc=

νpc

νpc' 3νc=

νpc 2νc=
Copyright  ©  2001, by S. Sarg                                                                                                                                                               3-5



BSM Chapter 3    Electron system (electron)
will start to oscillate in the inside hole of the elec-
tron shell. Initially the external positron will not hit
the helical shell of the internal one, because of the
repulsive fields around their edges, so some gap
could exists. Once they start oscillations, this gap
will be eliminated, because the positron shells
around both ends are always inside of the electron
RL(T) hole, where no space for stable EQ forma-
tion exists. Then the both positrons will oscillate as
a single structure. As a result of this, the amount of
the positive charge will oscillate alternatively at
both sides, and they will interact with the external
shell negative charge. In fact the electron system
usually is not fixed in the space and both the
positron and the external shell will oscillate around
a common equilibrium position. The periodically
appeared positive charge and the moving negative
charge will cause a  lattice disturbance. This distur-
bance however will be not propagated far from the
system, because the relative speed of the oscillating
structures, as we will see later, is close to the speed
of light. The oscillation energy from a single cycle
is very small in order to overcome the intrinsic
gravitation and to escape from the system, so it is
accumulated in the surrounding CL space.  The os-
cillating system in such way provides some  kind of
energy of the surrounding CL nodes, increasing
their ZPE.  We may call this effect a lattice pump-
ing effect. (A pumping effect will be also discussed
later when explaining the photon emission process
in the atoms). As a result of this, a pumped energy
becomes accumulated in both sides of the electron.
Knowing, that the EQ only could handle an excess
energy, the latter will produce a large number of
EQs of both types (positive and negative). At the
same time, the pumping is an energetic process and
should have opposite reaction from the CL space.
This means that, the CL space should have a satu-
ration number for the number density of the gener-
ated EQs for  unit volume. Consequently the
increased amount of both type EQ will continuous-
ly reduce the spatial modulation properties or E-
fields of the oscillating system., and the efficiency
of the pumping process. We see, that conditions ex-
ists for  multiple oscillations with gradually re-
duced amplitude. During the duration of this
process the proper resonance frequency of the elec-
tron, however, is not changed, because it has
enough stored internal energy.  When the pumping

process falls below some critical level,  the accu-
mulated energy in the CL space domains from the
both sides of the electron, will be suddenly released
as two quantum waves (photons). Note, that the
pumping velocities of the electron positron shells
had initial value of the linear light velocity. The
pumping process in this case is optimal and com-
pletely symmetrical. The released two quantum
waves have 180 deg  direction and are orthogonally
polarized.  They are first harmonics of the SPM fre-
quency, every one possessing an energy of 511
keV. The both waves are orthogonally polarized
because this is a condition for easier separation of
the pumped energy from the both sides of the elec-
tron.  The quantum waves are emitted when the ef-
fective strong type of oscillations are attenuated.
They are neutral type waves, i. e. equally affecting
the right and left handed nodes.The time of the os-
cillations and the finite time required for the energy
mixing between the both types of nodes is obvious-
ly related. It is determined by the intrinsic property
of the CL space and the electron. This time is
known as a Positronium life time, and its value in
vacuum is 145 psec. 

 But what happens with the final state of the
system? At the end of the oscillations the half of
both positrons are equally out of the external elec-
tron shell. So the amount of the negative field lines
from the electron external shell is equal to the
amount of the positive field lines from the half of
both positrons. The both type of the field lines are
interconnected in proximity, and the far electrical
field disappears. The obtained new structure is rel-
atively stable and its mass is equal to the sum of the
electron and positron masses. Such small neutral
mass will appear undetectable. For this reason it
seams, that the electron and positron are annihilat-
ed. In fact this is only a change of the state of the
matter.

We described one type of pumping effect be-
tween small particles whose peripheral part is mov-
ing with a light velocity. In atoms where the
electron is moving in the electrical field of the pro-
ton and the IG field is much stronger, another type
of pumping effect exists. It will be discussed in
Chapter 6.
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3.3 Confine motion of the electron. Electron 
spin.

One important feature of the electron is its
confine motion in the lattice space. One factor fa-
cilitating this type of motion is the large R/re ratio.
The main factor for the screw like motion, howev-
er, is the interaction between the oscillating (sta-
tionary) CL nodes from one side and the induced E
field by the internal RL(T) from the other. This
field is propagated by the BSM interaction of IG.
This interaction causes a formation of negative
EQs, arranged in a spatial helical configuration of
same handedness as the RL(T). This configuration
has an additional second order helicity due to the
second order helicity of the electron. As a result,
the whole electron system rotates with a spin direc-
tion determined by its second order handedness.
The positron system has the same second order
helicity and handedness as the electron system. So
the electron system and the free positron, both, al-
ways tends to perform a screw like type of motion.
This type of motion we call a “confined motion”.
The electron structure is moving and rotating like a
screw. The efficiency of the confined motion de-
pends of two factors: the motion velocity and the
momentum interaction between the proper fre-
quency oscillations and the momentum of SPM
vector of the stationary nodes.  In the case, when
the tangential velocity of the electron is equal to the
speed of light (linear), the motion is called an opti-
mal confine motion. The corresponding axial ve-
locity of the electron is called an optimal confined
velocity. For velocities below the optimal confine
one, the electron motion is completely screw like.
For velocities above the optimal confine one, the
system exhibits a quasi screw type of motion.

In a completely screw like motion, all the
points, lying on the central core pass through a
common helical trajectory. In a quasi screw type of
motion, every point of the central core has own hel-
ical trajectory. In both types of confine motion, no
one point lying in the core curved axis could ex-
ceed the linear light velocity. The axial electron ve-
locity for an optimal confined motion is 2.187x106

(m/s), corresponding to an electron energy  of  13.6
eV. The axial and tangential velocities for the two
types of confine motions are illustrated in Fig. 5.4.,

where the electron is shown as a single coil, while
the trajectory - by a dashed line., 

                            Fig. 3.4
Two types of confine motions of the electron.  The

electron is shown by a blue line and its trajectory by a dashed
line

Figure 3.4.a illustrates a case with a complete
screw type of motion at optimal velocity Vopt,
while 3.4.b - a case with a quasi screw type of mo-
tion. For both cases the trajectory of the front end
of the electron is shown (dashed lines), with the
momentum position of the electron (thick blue
line). The axial and tangential trace velocities are
denoted as Va and Vtr, and their ranges are shown
below the drawing. The velocity vector Vt indicates
the electron - positron oscillation.

Due to the interaction with the CL space, the
oscillating system “positron - electron shell”, in-
duces a magnetic field. As a result, the whole elec-
tron system exhibits some small momentum with
alternatively changing direction. This could be at-
tributed to a electron spin. In normal motion condi-
tions, the spin should have one preferred direction,
determined of the conditions for motion with less
resistance.  Then a question may arise: What is the
physical explanation of the   spin value assigned
to the electron? To reply to this question, we have
to distinguish between three cases:

- electron spin when the electron is in a mo-
tion around the proton

- electron spin flipping in  EMR technique
- electron polarisation
In Chapters 6, 7 and 8 we will see that the

proton has its own handedness. The electron trajec-
tory appears as a closed loop curve (with a shape
like a digit 8) around the proton, so it also has its
own handedness. As a result of this, two combina-

h
2
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Copyright  ©  2001, by S. Sarg                                                                                                                                                               3-7



BSM Chapter 3    Electron system (electron)
tions are possible: (1) the electron close loop curve
and the proton are both with a same handedness.
(2) They both are with different handedness. As a
result of these, the Quantum Mechanical spin has
two values, which are known as  spins. 

In a conditions of normal motion of the free
electron, the phase of the two oscillating systems
“positron - electron shell” and “positron - central
core” are automatically adjusted for a less resist-
ance in the interactions with the CL nodes. The in-
teraction energy of the first oscillating system is
much larger than the second one. In some experi-
ments like in EMR, the oscillating phases of the
both system may be temporally affected (so called
spin flipping) 

In some motion cases, a collimated electron
(positron) beam is striking a plane under angle. The
reflected electrons (positrons) in this case exhibit a
strong polarisation. This effect, however, is not re-
lated with the same type of Quantum Mechanical
spin, which appears in the optical spectrum.. Ac-
cording to the BSM, it is a result of the off-axial
momentum obtained in the internal rectangular lat-
tice of the oscillating internal positron during the
impact. This effect is experimentally observed. The
obtained momentum is preserved and appears quite
strong, because the internal rectangular lattices
contains a large intrinsic matter and the off-axis os-
cillation is a IG type of interaction. This kind of IG
interaction through the RL(T) internal structure af-
fects directly the external E-field of the electron, so
the oscillation energy is transferred to the elec-
tron’s electrical field. This affects the motion of the
electron in a way that its behaviour becomes de-
tectable. In the same time, this effect shows that the
internal RL(T) has some freedom to oscillate. Such
kind of oscillation may cause a minor change of the
spatial geometry (po apparently the helical struc-
ture twisting) but the involved IG field can accu-
mulate comparatively large energy. Consequently,
the electron and the positron may have ability to
store internal energy. This conclusion independent-
ly confirms the accepted feature of the electron to
posses a selfenergy. 

The discussed so far basic features of the
electron are summarized below:
• The electron exhibits a confine (screw type) 

motion in the lattice space

• The electron posses internal energy well. In 
CL domain of normal ZPE, the stored 
energy provides stable oscillations of the 
electron system components.

• The effect known as “annihilation” of elec-
tron and positron is in fact a damped oscilla-
tion of the compound system “electron - free 
positron”, terminating with emission of two 
gamma photons at 511 KeV.

• The photon emission is a sudden release of 
the  energy pumped in the surrounding CL 
space due to the self dumped electron oscilla-
tions.  The released energy is propagated 
through the CL space as a quantum wave 
(photon).

• The quantum motion of the electron is a 
result of interaction between the compound 
oscillating momentum of the electron system 
from one side and the SPM vector of the sur-
rounding CL space, from the other.

• The oscillating electron could be considered 
as a fundamental frequency etalon, if placed 
in CL space of normal ZPE, away from mas-
sive objects. Its frequency value in the Earth 
gravitational  field is the Compton fre-
quency. The fundamental frequency pro-
vides an absolute time base for analysis of 
processes at atomic level in a frame of abso-
lute coordinates.

3.4 Electrical field of the electron at confined 
motion

The electrical field of the electron is created
by the IG (TP) forces of the internal RL(T). This
forces form a highly ordered spatial field, which
modulates the external CL space, causing a forma-
tion of electrical quasispheres in the surrounding
CL space. The field is different for the cases of
“static” (not moving) and “dynamical” (moving)
electron. The static case is mostly theoretical, be-
cause the electrons always have some velocities.

In a case of “static” electron, the electrical
field has a maximal radius, which is practically de-
termined, by the surrounding noise level, defined
by the noise of the “permittivity fluctuations” of
the CL space

In a case of “dynamical” electron, the situa-
tion is different, and very dependable on the elec-

 h
2
---±
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BSM Chapter 3    Electron system (electron)
tron velocity. Figure 3.4.A illustrates the
modulation of the surrounding CL nodes at the op-
timal confined motion of the electron  (13.6 eV).

                            Fig. 3.4.A
        CL nodes modulation at optimal confined
       motion of the electron

Fig. 3.5 shows the radial configuration of the
same field by E-field lines. In this figure a diamet-
rical section dy with the orientation of the long axes
of EQ is shown. These axes coincide with the E-
field lines, shown by dashed lines. The radial de-
pendence of the tangential node momentum also is
shown in the bottom part of the figure. 

Let make analogy between the radial E field
configuration of the electron and the field configu-
ration of the first harmonic quantum wave (see
§2.11.3). The similarity between them are the fol-
lowing:

- They, both, have boundary conditions pro-
vided by MQ and determined by 

- The E-field lines are aligned
The distinguishing  features are the follow-

ing:
-  The integrity of the E-filed in the quantum

wave is kept by the energy motion from node to
node. The both types of EQ are equally affected
(for a neutral wave) or complimentary affected (for
a quasiparticle wave)

- The integrity of the electron E field is kept
by the IG(TP) field of its internal rectangular lat-
tice. 

 

                           Fig. 3.5
Radial configuration of E field of the electron
at optimal confined velocity (energy of 13.6 eV)

The magnetic boundary condition in both
cases is determined by the helical boundary wave-
length , related to the Compton wavelength 
by the boundary factor , used in the relation

. It was shown in Chapter 2, that the val-
ue , matches well to the Rayleigh criterion
for detection of monochromatic wave by diffrac-
tion limited optics. In this Chapter we will show,
that this value fits well, also, to the quantum motion
conditions of the electron. From Fig. 3.4.1 we see
that, when the tangential velocity of the electron
central axis (curve) is equal to the light velocity,
any point of its external shell makes a full rotation
for one proper cycle. The length of this trajectory
per one cycle is equal to the Compton wavelength.
Then:         , or:

                                (3.4)

λhb

λhb λc
k

hb·

λhe λckhe=
khb 4=

λc 2πRc 2πRmb 1( )/khb= =

Rmb 1( ) khbRc 4Rc= =
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where:  - is the magnetic boundary ra-
dius for boundary conditions, equal to the size of

 (defined by the MQ).
Let to analyse the difference between E-field

integrity in a case of quantum wave, and in a case
of electron. In a case of quantum wave, the E-field
integrity is kept by the alignment of the EQ in hel-
ical trajectories. The length of these trajectories for
one SPM cycle varies between  and  (for a
first harmonic quantum wave), depending of heli-
cal radius. We can distinguish two types of integri-
ty in the quantum wave: one - along the helical
trajectories and second - between them. This integ-
rity, however, is realised in a cylindrical volume
with a radius equal to the boundary radius and a
volume length of . The electron has a pretty large
ratio between the coil radius and the helical step
(this ratio is 21.8 and it will be shown in the next
paragraphs). While the circumference for the opti-
mal velocity is equal to , if regarded as a cylin-
drical volume, its length is pretty short. Such space,
does not allows fulfilment of both types of E-field
integrities, as in the quantum wave. Consequently
only one type of integrity is possible, and this is the
alignment of the EQ in field lines. One may argue,
that the negative EQ’s may repel each other, as be-
tween two charges of same type. Here the situation,
although, is different. In the case of induced EQ be-
tween two charges of same type, the synchroniza-
tion condition is not uniquely defined, because the
RL(T) of the both charges are not synchronize be-
tween themselves. In a case of one charge, all EQ
of same type are synchronized by the same source
- the internal RL(T). Then the negative EQ are able
to influence stronger the neighbouring nodes of op-
posite handedness. So the latter get some comple-
mentary motions as a passive  neighbours, but their
energy could not compensate the field of the nega-
tive EQ, directly induces by the RL(T). Saying in
other words, the induced EQ of same handedness
have a strong reference point - the negative RL(T)
of the helical structure, while the neighbouring
nodes of opposite handedness does not have a ref-
erence point.

All the field lines are connected to the inter-
nal RL(T) of the electron. The EQ polarisation is
gradually changing from the strongest value, near
the helical shell, to weakest one, near the boundary.
The lines are bent and terminated at the boundary

zone by MQ (only for a rotating electron). The field
line intensity is proportional to the polarisation of
EQ. Then one important feature emerges: The
electrical field lines of the electron are not con-
nected between themselves, and have a freedom
for taking a proper space position. This is very
important effect, because when the electron is
moving in not homogeneous CL space, as in the
metal crystals, its E-filed lines could automatically
sense the lower resistant domains. This effect pro-
vides one very important feature: a path sensing
property of the moving electron. The path sens-
ing property is related to the NRM cycle and can
operate faster than the quantum magnetic interac-
tion, that is related to the SPM cycle. 

The radial configuration shows, also, another
important feature: the angular frequency of the
rotating electron in the optimal velocity is equal
to the angular frequency of the SPM vector, as-
sociated to the MQ at the boundary zone.

In the bottom part of Fig. 3.5 the radial de-
pendence of the tangential node momentum is
shown. The same momentum is illustrated also by
arrows in the radial section. The shape of the curve
presenting this momentum is determined by the
orientations of the EQs. The long axis of EQ has
larger momentum than the shorter one. The shape
of the radial dependence of the tangential node mo-
mentum is not calculated, but given as example.
Assuming that the node inertial mass is one a same
for MQ and EQ, we may right:

While the above feature does not give a proof
that the ratio between  and  is equal to 4, the
quantum motion of the “positron - core” system
will help us to do this. This will be discussed in one
of the next paragraphs. Apart of this, from the anal-
ogy with the first harmonic quantum wave, it ap-
pears that the following relation is valid.

:
                (3.5)

Fig. 3.6 shows the radial dependence of some
field variables for the optimal confined velocity.

Rmb 1( )

λSPM

λc λhb

λc

λhb

pt Rc( ) mnc mn2πRc/νc= =

pt Rmb( ) mnchb mn2πRmb/νc= =

Rmb Rc

Rmb
Rc

---------
pt Rc( )

pt Rmb( )
-------------------

chb
c

-------
λhb
λc
-------- khb= = = =
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                           Fig. 3.6
   E-field parameters at optimal confined velocity

The radial dependence of the E-filed intensity
is shown as Er and normalized to the maximum val-
ue at the radius equal to Rc. By reshaping the shad-
ed area of Er to rectangle, we obtain the equivalent
electrical radius. This radius will be determined in
§3.11.

The E-field line intensities in the internal side
of the radial section are expected to converge to
zero (or MQ) at the centre. The reason for this is,
the diametrical opposite EQ, getting  SPM modula-
tion of opposite direction.

So far, the radial section of the E-field in the
optimal confined motion of the electron was dis-
cussed. What are the boundary conditions and the
field configuration in the axial section? The E-field
configuration in the vicinity to the electron shell
has been shown in Fig. 2.47.A, and it is given again
in Fig. 3.7. We should not be surprised, that some
of the internal E-field lines are connected. It was
mentioned, that this is possible, because they are
generated by one and a same internal rectangular
lattice, and the space is enough close. For the far
field this condition is disturbed due to the accu-
mulated phase differences in the EQ’s.

 

                         Fig. 3.7
 
The boundary condition for optimal confined

motion is the  same, i. e. the circumference length
of the section is equal to . The boundary
section in a plane normal to the coil plane, howev-
er, is not circular, but slightly elliptical. It is evi-
dent, that the concentration of E-field is also not
homogeneous, but with different configuration. As
a result of this, the density of the terminating E-
filed lines at the boundary section is not uniform as
in the radial section.  The boundary section is illus-
trated in Fig. 3.8, where the denser E-field line ter-
mination is presented by denser points

                            Fig. 3.8
 Axial  boundary section of the electron at
 optimal confined velocity. The terminated 
E-filed line density is shown as a point density

From the radial and axial E-filed line config-
uration we see, that at the optimal confined motion,
the boundary conditions zone has a shape of oblate
spheroid whose axis coincide with the rotational
axis of the moving electron. The density of the ter-
minated E-filed lines is larger at the equator and
lower at the poles. In such configuration, the E-
field lines still posses strong guiding feature, which
keeps the electron orientation in its screw type of
motion. In the next paragraph we will see, that at
motion with velocities lower, than the optimal one,
the circumference length of the central section is

λSPM MQ
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an integer number of , and the shape of the
boundary surface approaches a sphere.

Only for the region inside of the boundary
surface, the E-field appears not uniform. For a
“static” electron or moving electron with axial ve-
locity higher, than the optimal one, the E-field con-
figuration is different, and in many cases may
appear to have a uniform spherical shape. The hel-
ical configuration, although, is always preserved. 

We may summarize:
• At optimal confined motion of the electron,  

the E-field is locked in a boundary surface, 
whose central sections has circumference 
length of 

• Inside the boundary surface the E-field pos-
sesses a helical configuration

• The boundary surface at optimal confined 
motion has a shape of slightly oblate sphe-
roid, with maximum density of terminated 
E-field lines in the equatorial region

• At velocity lower than the optimal one, the 
boundary surface approaches the shape of 
sphere.

• The high efficiency confined motion of the 
electron is supported by its electrical field

• The moving electron possesses a path sensing 
property, due to the relative freedom of its 
electrical lines.

3.5 Dynamical properties of the electron in con-
fined motion

3.5.1 Oscillation properties at optimal confined 
velocity

For electron moving with optimal confined
velocity the following relation (3.6) is valid:

(rotational frequency of electron shell) = (electron-
positron proper frequency) = (SPM MQ frequency)     

We may say, that the motion with an optimal
velocity is a motion at first harmonic of SPM (as
for the quantum wave).

The second two terms of the expression (3.6)
are always equal to the Compton frequency, inde-
pendently of the electron velocity. This is so, be-
cause the positron edge is moving in the proximity
E-filed of the external negative shell. This E-field,
influenced by the proximity IG(CP) filed, is “car-

ried” by the electron negative E-filed and is not af-
fected by the electron velocity. Due to the
proximity of IG(CP) filed, it has a constant value
for any sub optimal velocity. The central negative
core, also, oscillates in the negative E-filed in the
proximity of IG(CP) filed.

The motion environments for the both types
of oscillating system are illustrated in Fig. 3.9.

                          Fig. 3.9
Motion environments around the edges of the
electron

Figure 3.9.a shows the motion environment
of the positron and the central negative core. Figure
3.9.b shows the radial dependence of the negative
proximity electrical field Epr in the motion region,
near the external electron shell. This  field does not
fall completely to zero in the central core axis, but
to some residual value Eres. The oscillation condi-
tions then are different for the positron shell and for
the central core. If assuming a linear dependence of
Epr inside of radius re, the positron E-filed will in-
teract with the negative proximity filed, lying
above 2/3Er, while the central core - with the field
Rres. The interaction forces for the positron then are
attractive but with a small cosine between the vec-
tors. The interaction forces for the negative core are
repulsive but with a cosine equal to zero. The elec-
tron and positron helical shell, however has their

λSPM  MQ

λSPM  MQ
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our energy storage system RL(T), while the central
core does not have such one.

The oscillation conditions of the positron -
central  core system will be discussed later in this
chapter and in Chapter 4 (about the superconduc-
tivity). It will become evident, that this system ex-
hibits two different proper frequencies depending
of the external conditions and the strength of the in-
voked oscillations.

(1). case: for small amplitude oscillations: 
(2) case: for large amplitude oscillations and

free positron: 
Let analyse now the first case. In result of the

simultaneous oscillations of both systems, the
moving electron obtains a ‘hummer drill” effect,
which facilitates the the displacement (and simulta-
neous folding and unfolding) of the  the CL nodes.
In this case, the oscillating internal positron with its
core oscillating at third harmonic, provides a “ham-
mering” effect, whose momentum is tangential to
the helical trajectory. This effect, from one side,
provides alternative component of the electron ro-
tational motion, and from the other, contributes to
the average velocity stabilization. The motion
property of the electron due to the “hummer drill”
effect are  discussed in the next paragraph.

 For a motion with a velocity lower than the
optimal one, the direction of the oscillation is still
tangential to the trajectory and the “hummer drill”
effect is still working. For  velocity above the opti-
mal one, however, the momentum of oscillation is
not tangential to the trajectory (see Fig. 3.4) and the
effect is significantly reduced. The “hummer drill”
effect is stronger at the optimal confined motion,
less stronger in the range of lower velocities and
negligible for higher velocities. In all cases howev-
er, it contributes to the screw type of motion of the
electron, together with its electrical field.

3.5.2 Motion properties of the oscillating elec-
tron. Quantum motion.

We may denote the oscillation system as a e-

/e+ system. From Fig. 3.9.a we see, that the
positron shell with its RL(T) oscillates in the nega-
tive proximity field of the electron, whose radial
dependence is shown in Fig. 3.9.b. 

The SPM EQ phases are synchronised along
the E-field lines, while their long axis orientation

depends of the radius. From the configuration
shown in Fig. 3.5 and 3.6 we see, that the cosine be-
tween the tangential vector of the electron shell and
EQ long axis approaches 90 deg. The same is valid
for the positron motion inside of the electron. The
EQ SPM momentum in this direction is reduced. In
such case the electron moves and oscillates with
less resistance. The hummer drill effect of the cen-
tral core also contributes to the motion. Such mo-
tion conditions are valid, only when the radial
boundary circumference is equal to whole number
of Compton wavelengths. Only in such condition
one full rotation of the external electron shell in CL
space, contains whole number of its subsystem os-
cillations. It is obvious, that such motion condition
are valid for preferred selected velocities. We may
call this type of electron motion a quantum mo-
tion.

Consequently, in conditions of quantum
motion, we may refer the motion of the electron
positron system with its proper frequency di-
rectly to the SPM frequency of the CL space. 

Both: the proper frequency of  the e-/e+ sys-
tem and the SPM frequency of the boundary, have
one and same value equal to the Compton frequen-
cy.

Let to analyse the NRM and SPM  of the CL
stationary node during one cycle of SPM. The du-
ration of the cycle is equal to the Compton time
(period). During this time the direction of NRM
and SPM vector changes in 3D space. Figure 3.10
illustrates the timing diagram of both vectors in 2D
drawing, where a. - shows the spatial direction of
the CL node NRM vector as sinusoids at step of

, b. shows the positions of the CL node SPM
vector.

                           Fig. 3.10
NRM and SPM vector during one Compton period 
The NRM(CP), shown in Fig. 3.10.a has one

and a same momentum for the opposite direction of

3νc

2.25νc

π/4
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180 deg. The NRM(TP), however has a different
momentum due to the twisted parts of the prisms.
For this reason the NRM(CP) appears, to have
twice shorter cycle, than NRM(TP). The SPM vec-
tor, however, is determined by the NRM(TP). In
such aspect we may consider, that the NRM(CP)
serves as a stroboscopic carrier of NRM(TP),
providing in this way stronger quantum fea-
tures of the CL space. Having in mind the fixed
positions of the CL nodes, and SPM MQ syn-
chronization, it becomes evident that the quan-
tum features are simultaneously temporal and
spatial.

The temporal quantum features of the
NRM(T) of a stationary CL node are illustrated in
Fig. 3.11, where: a. - shows the SPM vector phases,
b. - the CL node resonance momentum, c. - the
time phase of SPM vector in one spatial direction
(denoted as positive), d. - the time phase of the
SPM vector in a opposite spatial direction (denoted
as negative)

                           Fig. 3.11
   Temporal quantum features of CL node vectors

Let the electron motion is invoked by exter-
nal E-filed with a relatively small gradient, so the
e-/e+ oscillation amplitude is small. Then the main
disturbance of the CL space, due to the electron
motion is from the electron E-field, while the dis-
turbance effect of the e-/e+ oscillations on the CL
space could be neglected). In order to analyse this
motion we have to take into account the frame of
the reference. For this reason we will use the con-
cept of the virtual observer.

Let imagine that a virtual observer, sitting in
the front edge of the electron (external shell), ob-
serves the motion of the positron edge using its vir-
tual fundamental clock. So its time base is the
Compton time. Let accepting that the peripheral
velocity of the electron is equal to a linear light ve-
locity, and the PP  (phase propagated) SMP vector
is synchronized to appear in the same direction. If
the SMP frequency is equal to the electron proper
frequency, the virtual observer will see both vec-
tors vibrating in phase.  But this means that the
SMP phase is propagated together with the virtual
observer with velocity, which is strictly dependent
on the node SMP frequency and node spacing. In
this conditions, the virtual observer will move with
velocity equal to a linear light velocity. The task of
the virtual observer is to register the timing dia-
gram of electron in absolute units. Knowing a pri-
ory that he moves with a light velocity he may
prefer to reference the local velocities to the light
velocity. Then the timing diagrams of the electron
system oscillation from his point of view will look
like this shown in Fig. 3.12.  

                           Fig. 3.12
Timing diagrams of electron system motion with simul-

taneous oscillations at first proper (Compton) frequency
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The amplitudes of motion, velocity and oscil-
lating charge are exaggerated in the drawings. In
fact they are intrinsically small.

The electron is shown in a. as a cylindrical
oscillating body for simplicity. It is assumed that
the electron shell moves with light velocity and the
velocity of the front and back positron ends are
shown respectively in c. and d. The sharp velocity
spikes corresponds to a maximal interaction with
the CL space. They are responsible for the synchro-
nization of the electron oscillation with the SMP
vectors of the nodes. The periodical appearance of
the positive charge from both sides of electron in-
teracts with the lattice space and is responsible for
the phase locking conditions. As a the result of the
positive charge oscillations the external shell prac-
tically will not have exactly light velocity but will
possess a small AC (alternative) component
around the DC component of the light velocity.
The value of this AC component is automatically
self regulated due to the oscillation interactions be-
tween the electron and the CL space. 

Equivalently we may consider that the
electron always oscillates with its frequency ,
but meets the SMP vectors of the surrounding
nodes with a correct phase.

We may accept, that small oscillations of the
whole electron system around the linear light ve-
locity are possible, because the helical light veloc-
ity is  times larger. The interaction at this
conditions with the CL space, however, is signifi-
cant. As a result of this, the quantum effect is sig-
nificant. The positron - central core oscillations
also contributes to the “hummer drill” effect. Hav-
ing in mind, that the proper frequency of the
positron-core (for small amplitudes) is three times
the e-/e+ proper frequency (Compton), the alterna-
tive electron motion will get a third harmonic in
phase.

From the condition of phase synchronization
between the e-/e+ proper frequency and the CL
node SPM frequency (both equal to the Compton
one), it follows, that for one full turn of the electron
the following relations are valid:

;  and  .
These are the same relations, assumed in §3.4

from the analogy with the first harmonic quantum
wave. 

The second relation shows that the Compton
wavelength can be considered as a path that any
point lying on the external helical shell passes for
one Compton period, when the tangential velocity
of the rotating electron is equal to the light velocity.
This relation is used in §3.6 for determination the
electron dimensions. 

3.6 Dimensions of the electron.
The intrinsic mass of the electron is much

smaller than the proton. Then we can assume that
the electron does not shrink the lattice space (this
will become evident later). Let consider a confine
motion of an electron with optimal velocity. In this
case the peripheral part will move with a speed of
light. We may consider however that the light ve-
locity corresponds to the radius R instead of
f(R+re). This is acceptable (and will be evident lat-
er) because, from one side,  the ratio re/R is small
(0.0229), and from the other, the CL disturbance
effect from the higher velocity at (R+re) will be bi-
ased by the lower velocity at  (R-re). Then taking
into account the screw like motion, the following
relation is valid:

peripheral velocity: c        -   path:  
axial velocity:                 -   path:  s
Then the  axial velocity is:

                                       (3.6)

Equation (3.6) gives the axial electron veloc-
ity for its optimal confined motion. This velocity is
very specific and  practically it appears in many
cases related with electron motion. (for example
the electron motion in the lowest stable orbits in at-
oms). Then our guess (which will be confirmed lat-
er) is: this is the velocity of the ao orbit in the Bohr
atom model, corresponding to energy of 13.6 eV. 

                                        (3.7)

where: qo - is the electron charge,
           h   - is the Plank’s constant
            - is  the permittivity of vacuum
            - is the fine structure constant
We will prefer to express the velocity by the

fine structure constant , whose physical meaning
will be revealed right away.

νo

khb
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                                                     (3.8)

The fine structure constant is the ratio be-
tween the axial and tangential velocity of the
electron at its optimal confine motion. (The tan-
gential velocity at the optimal confine motion is
equal to the linear light velocity). 

We see that the fine structure constant, from
one side is  very basic parameter, and from the oth-
er, it helps to determine the electron dimensions.
We see, also, that it is a dimensionless ratio of one
and same parameter - velocity. Consequently, the
fine structure constant will be not affected of even-
tual lattice space shrinkage (filed curvature).

Combining eqs. (3.6), (3.7) and (3.8) we get
the step to radius ratio of the electron.

                                (3.9)

From Eq. (3.9) we see, that the fine structure
constant is completely determined by the radius R
and the helical step se. It is convenient to express 
directly by the ratio R/se.

                               (3.10)

In order to derive another equation about the
electron, we will analyse its trajectory at optimal
confined motion.

Having in mind the E-filed integrity we may
express the path of one point of the central core, for
example the frond edge, per one cycle time of the
electron proper frequency:

                          (3.11) 

Solving the system of (3.9) and (3.11), we get
the values for R and se.

R = 3.86159 E-13 (m)
s = 1.77061 E-14 (m).

It is not a surprise, that the obtained value of
R is exactly equal to the Compton radius, however,
we obtained the value of the helical step, that is
very important initial result. Returning to Fig. 3.1
and Fig. 3.2 we see that the helical step could not
be less than 2re, because the positron then could not
be able to come partly out in order to make oscilla-

tion. It also could not be much larger and this will
become evident in Chapter 6 (because then the neg-
ative muon will be not able to crash and decay to a
positron if his step is too large. In  most of the ex-
periments performed by positive muons it is found
that they could oscillate longitudinally until they
decay to a positron). The helical step similarity be-
tween the muon and electron (positron) according
to BSM is obvious. The electron (positron) could
be regarded as a single coil structure of that of
muon. From these considerations and from the sta-
ble appearance of the fine structure constant in the
electron spectrometry, we may accept, that the edg-
es of the external electron shell are just touching.
This means that:

                                                            (3.12)
According to the discussion given in §3.11.2,

the relation between se and re is more accurately
given by the gyromagnetic factor. This is a di-
mensionless physical factor, theoretically calculat-
ed and experimentally determined with very high
accuracy (see Eq. (3.23.c). Then the small electron
radius re is directly obtained from the relation:

                          (3.12.a)

The ratio between the electron and positron
small radii is determined by the accepted ratio be-
tween the left and right handed prisms: 2/3. This ra-
tio is further confirmed by quantum motion of the
electron (discussed later in this Chapter), the frac-
tional quantum Hall effect (discussed in Chapter 4,
Superconductivity), and by the BSM interpretation
of the  decay.  According to this ratio we have: 

 rp/re = 2/3.                                          (3.13)
Then the  dimensions of the electron are the

following:
R = 3.86159 E-13 (m)
re = 8.8428 E-15 (m)
rp = 5.8952 E-15 (m)
s = 1.77061 E-14 (m)
R/re = 43.669
R/rp = 65.5

The shown above dimensions define also the
positron.

The thickness of the helical shell is very small
in comparison to the re and rp. This is evident from
the calculations in §2.14, where the CL node dis-
tance along abcd axes is found to be:

α υ
c
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 [m].  Having in mind that this dis-
tance is larger than the sum of the right handed and
left handed prism lengths, the prisms diameter then
is at least one order below this value. The helical
core thickness is only three prism diameters, so it is
negligible in comparison to rp. Then, practically,
for many calculations, we may consider, that the
internal RL(T) of the positron has external radius
of rp, and the internal RL(T) of electron is from rp
to re. Realistically some radial gap should exist be-
tween the electron internal RL(T) and the positron
structure. This could be explained, if having in
mind that the radial thickness of the electron’s neg-
ative RL(T) is less than half of the radius re, so this
shell it is not completed like the RL shells of the
positron. Then its average radial node density is
larger than this of the positron, and in the process
of RL twisting, its internal radius may not shrink so
much.

The RL(T) of the positron also has some fi-
nite internal radius. This is its trapping hole radius
in which the central core oscillates.

The internal holes of both RL(T) of the elec-
trons are not affected, if the internal structure is
lost. The probability of the positron to lose the cen-
tral core is much lower. However, it may regener-
ate the lost negative core by the trapping
mechanism. 

The large ratio R/re and R/rp favours the con-
fine motion of the electron and positron in the lat-
tice space.

From Eq. (3.10) and the above made calcula-
tions, we found that the fine structure constant  is
completely determined by the ratio of R/se. But this
ratio together with radius re, according to the anal-
ysis in Chapter 2 are determined by the balances of
forces between the internal RL(T), the bending hel-
ical core and the CL space forces (E -filed). 

Consequently, we may conclude, that:
•  The fine structure constant provides indi-

rect estimation of the CL space parameters 
by the geometrical parameters of the elec-
tron 

• The dimensions of the electron, are dependa-
ble of the CL space parameters.

The second conclusion shows one very im-
portant feature of the electron. From one side, it
may help to explain some effects in the General
Relativity, and from the other - some cosmological

effects, related with the observed  galactic red
shifts.

 The above obtained dimensions appear very
useful for solving the following tasks:

- estimation of CL space parameters: static
and dynamic pressure

- derivation of theoretical equation for esti-
mation of Newtonian mass (mass equation)

- derivation of theoretical equation for a
background temperature of CL space

- calculation of the proton dimensions, in-
cluding its substructures

In solving the above tasks, we will use the ge-
ometrical parameters of the electron. They could
serve as a basic reference units.
 It is useful to know, that any one of the geometrical
parameters of electron  has direct expression by the
fundamental physical constants. These expressions
are given below. 

                     Compton radius      (3.13.a)

                helical step             (3.13.b)

                       small radius           (3.13.c)

                         positron small radius

3.7 Interaction between the moving electron 
and the external electrical field

When the electron is forced to move by exter-
nal electrical field it exhibits a confined motion. If
the accelerating field possesses an axial symmetry
and the electron has some initial velocity it will be
accelerated by the filed, but will preserve its
straight trajectory. In the interaction process, the
external filed interacts directly with the electron.
The interaction forces of the accelerating field,
may be considered applied to the circumference at
radius equal to its equivalent  electrical radius Req.
For a symmetrical field, the forces acts as a sym-
metrical “pull-up” forces and do not cause change
of the straight line trajectory of the electron.

The interaction process between moving
electron and external magnetic field is a different.
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 3.8 Interaction between a moving electron and 
an external magnetic field

The process of interaction between a moving
electron and external magnetic field is explained by
the help of Fig. 3.13. In this figure the central plane
of the radial section of the electron field is shown.
The external magnetic field is presented by parallel
lines with arrow pointing the filed direction. The
interaction take place only in the circumference
with radius Rbm. The magnetic field lines can in-
clude only magnetic quasispheres (not disturbed
CL nodes), whose phases are synchronized. In the
radial section of the electron field, the circumfer-
ence at radius Rbm, only, include magnetic quasi-
spheres. According to the field integrity condition,
they should be energetically connected to the adja-
cent EQ of the electron field. Due to the electron
rotation in its screw like motion, the effective forc-
es from both sides of the axis OO’ are different. 

 

                           Fig. 3.13
Interaction forces between external magnetic
 field and the field of the moving electron

(In the drawing only two resultant forces are
shown, for simplicity) The right side of the electron
single coil structure will get acceleration from the
magnetic field, while  the left side - deceleration.
This will cause the electron to get angular momen-
tum around the axis OO‘. The electron containing
kinetic energy will make a cyclotron curve in a
counter clockwise direction. For stronger magnetic
field, the filed lines are denser and the cyclotron ra-
dius will be smaller. If the direction of the magnetic

field is changed the cyclotron rotation will be in a
clockwise direction. The classical equation for the
cyclotron radius is:

                                                 (3.14)

where: me is the electron mass, v is the veloc-
ity, q is the electron charge and B is the magnetic
field.

Accelerated electron makes a circle with an
angular frequency  named a cyclotron frequency.

                                         (3.15)

In §3.4 and Fig. 3.8, it was shown, that the
boundary conditions for electron with optimal con-
fined velocity has a shape of oblate spheroid, and
the density of the terminated E-filed lines is larger
at its equator. The simplified presentation of the in-
teraction mechanism, presented above is equally
valid also for this case.  

Fig. 3.14 shows the electron motion in quad-
rupole magnetic field. If the electron moves exactly
in the centre of the field along the axis normal to
the drawing plane, the field will exercise symmet-
rical forces on the magnetic boundary radius and it
will not get deviation. If the electron is slightly of
the central axis, it will get a helical trajectory
around this axis. The shown type of magnetic filed
is used in the synchrotron accelerators.

                             Fig. 3.14
               Quadrupole magnetic field 
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3.9 Quantum motion  at optimal and subopti-
mal velocities. Quantum velocities.

3.9.1 Quantum stabilised velocities and their 
corresponding energy levels

From the axial boundary section of the elec-
tron E-field at the optimal confined motion, shown
in Fig. 3.8, we see, that the E-field is restricted in a
near spherical volume. The exact boundary condi-
tions, i. e. the isolated magnetic quasispheres are
valid only for a part of the total E-field volume.
This volume could be approximated with a cylin-
drical volume with a base approximately equal to
the central section of the spherical volume with ra-
dius Rmb and small thickness. For the optimal con-
fined motion, corresponding to energy 13.6 eV, the
boundary condition is . The next
possible boundary conditions, is fulfilled, when the
boundary radius of the external surface is equal to

. In this case the electron rotates with
twice lower frequency. The electrical field param-
eters of the moving electron in both cases are
shown in Fig. 3.15.

                           Fig. 3.15
Radial E-field and boundary conditions of the electron
for motion with two consecutive boundary conditions

Similar type of motion is possible if the cir-
cumference length is equal to n times . In
these conditions, the rotational frequency of the
electron is respectively . The n appears to be a

subharmonic number in a similar way as in the
quantum wave (photon). 

Having in mind, that the electrical charge is
one and a same, from Fig. 3.15 we see, that for the
n subharmonic, the radial energy becomes distrib-
uted in n2 larger area, than in the first harmonic.
This is not valid only for the proximity field, as in-
dicated in the drawing. Consequently, the energy
density outside of the proximity field is inverse
proportional to the subharmonic number. In the
same time the constant energy in the proximity
field keeps the normal self energy of the electron at
constant value. The latter condition assures a stable
proper resonance frequency of the electron oscillat-
ing systems.

As a result of described above features, the
moving electron exhibits a quantum motion at
preferable velocities. This velocities corresponds
to a defined kinetic energies.

Let determine what are the resistive forces,
which oppose the optimal confined motion at the
quantum subharmonics. They are two:

- The CL resistance due to the rotation of the
electron E-field;

- The CL resistance due to displaced CL
nodes by the electron volume

The resistance from the rotated E-field is
smaller exactly at motion with subharmonics, be-
cause part of the radial circumference of the E-field
is isolated. The isolation effect is only a partial, so
the electron is still able to interact with some exter-
nal electrical field.

The second resistive force, mentioned above,
is from the displaced and folded CL nodes. (They
do not pass through the RL(T) structures of the
electron). Larger tangential velocity causes a larger
number of folding and restoring nodes. This means
a larger work. 

The tangential velocity of the electron exter-
nal shell at different subharmonic numbers is:

                      (3.16)

where: n - is the subharmonic number
Knowing that the fine structure constant

gives the relation between the tangential and axial
velocity, we can work directly with the axial veloc-
ity, which in fact is the classical velocity of the
moving electron.
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                                          (3.16.a)

Then the energy levels (in electron volts) for
the quantum motion are given by Eq. (3.17)

      (3.17)

where: me is the electron mass, q - is the elec-
tron charge

One useful expression, derived from (3.17) is
the equation of the axial velocity. Its average value
should not exceed the linear light velocity.

                                    (3.17.a)

We may denote the preferred energy levels as
SPM subharmonic energy levels, and the corre-
sponding velocities - SPM subharmonic veloci-
ties or quantum velocities of the electron,
knowing that they are referenced to the SPM fre-
quency of the magnetic quasisphere. In other words
they are the preferable quantum levels of interac-
tions. Table 3.1 shows the energetic and boundary
parameters of the first six quantum levels, where:

 is the circumference length of the radial sec-
tion, v is the axial velocity of the electron, E is the
energy level in (eV).

                                                                       Table 3.1
===========================================
n       Boundary                          v [m/sec]             E [eV]
         radius
===========================================     
1       Rmb                         2.187E6                13.6
2       2Rmb         2             1.094E6                3.401
3       3Rmb         3             7.292E5                1.5117
4       4Rmb         4             5.469E5                0.8054
5       5Rmb         5             4.375E5                0.544
6       6Rmb         6             3.646E5                0.3779
-----------------------------------------------------------------

The energy levels of the Bohr atom are given
by Eq. (3.18).

                                  (3.18)

where: ao is the Bohr radius
The derived Eq. (3.17) gives exactly the same

energy levels as the Eq. (3.18). While the Eq.
(3.17) is based on the atomic model, suggested by
Bohr, the proposed by BSM equation (3.18) ex-
presses directly the electron quantum behaviour in

the CL space. Consequently, the quantum behav-
iour is intrinsic feature of the electron. Then it can
appear in the combine motion between the electron
and proton. In the Hydrogen atom, every possible
subharmonic number of the electron quantum mo-
tion define the bottom level of the series. They are
the following:

                                                                 Table 3.1
----------------------------------------------------------------------
Subharmonic number    Lowest level in [ev]       Series name
----------------------------------------------------------------------
    1                                   13.6                                 Lymen
    2                                    3.4                                  Balmer
    3                                    1.51                                Pashen
    4                                    0.85                                Bracket
    5                                    0.544                              Pfund
    6                                    0.3779                            Sixth
----------------------------------------------------------------------  

These levels, when considered as a quantum
numbers are more stable than any other transitional
levels, because of the complimentary interactions
between the oscillating electron and the oscillating
CL nodes. (The SPM frequency of the CL nodes
are   synchronized by the Zero Point Waves, which
always exists in a normal CL space).

Similar motion conditions exist not only for
the electrons in the Hydrogen atom but for any oth-
er atom. In the second case, however, the energy
levels are modified due to the common positions of
the protons in the nucleus and the stronger nuclear
IG field.

3.9.2 First harmonic motion and Rydberg con-
stant

The Rydberg constant (known also as Ryd-
berg) is involved in the well known Rydberg-Ritz
formula. It is a measurable parameter by the atomic
spectroscopy. It may be expressed in wavenum-
bers, electron volts, or wavelength. The constant
value has a very slow change from element to ele-
ment.  For the very heavy atoms, the Rydberg in
wavenumbers is given by the equation:

   [m-1]        (3.19)

For the Hydrogen atom it is little bit smaller.

     (3.19.a)
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where: the term in the bracket is known as re-
duced electron mass

The Rydberg constant, according to BSM, is
defined directly by the condition of the first har-
monic quantum motion of the electron.

For a first harmonic motion, the electron en-
ergy in SI units is:

                                       (3.20)
                    where:  is the wavenumber
The quantum energy level according to Eq.

(3.17) for   in SI units is given by Eq. (3.21),
while in (eV) - by Eq. (3.21.a)

   [J]                    (3.21)

      [eV] 
                         
Equating (3.20) and (3.21), and solving for ,

we get the value of Rydberg in wavenumbers.

  [m-1]          (3.21.a)

If making a substitution  in Eq.
(3.19) it converts to Eq. (3.21.a). Consequently:
• The Rydberg constant corresponds to the

electron’s motion at first SPM harmonic (a
case of optimal confined motion).

The Rydberg constant, according to Eq.
(3.21.a) (containing only CL space parameters) ap-
pears to be a parameter of the CL space. The fine
structure constant is also a CL space parameter, but
estimated by the electron parameters. In §3.11 it
will be shown, that the electron parameters in fact
are defined by the CL space parameters, because
they  determine the shape and dimensions of the
electron. There is one very small contribution from
the bending resistance forces of the helical core,
that are not defined by the CL space parameters.
This small contribution, in fact, gives the general
relativistic deviation. Ignoring the latter one for
now, we can make a conclusion, that:
• The Rydberg constant is a CL space parame-

ter 
In the table of fundamental constants, the Ry-

dberg constant is given also in frequency units, and
in energy units. In the latter case, when estimated
in (eV) it corresponds to 13.6 eV - the energy of the
electron optimal confined motion.

 One question may arise: Why the accurate
value obtained by Eq. (3.21.a) matches exactly the
Rydberg for the massive element and not for the
Hydrogen? The explanation is the following:

The Rydberg constant can be regarded as an
energy parameter of the CL space. When a photon
is emitted as a result of CL pumping, an exact
equivalence exists between the pumped and the
photon energy.

CL pumped energy = photon energy
For this reason the signature of the Rydberg

constant appears in the atomic spectra. This gives a
possibility for its experimental estimation. The
pumping conditions in atoms are obtained by the
circling of the electron around the much heavier
nucleus. They both are not fixed in the CL space,
but only by their masses. So for the pumping ef-
fect of the stationary CL space (in our case the
Earth local field) we have to consider their com-
mon motion.  For the much heavier nucleus, the
comparative electron mass become intrinsically
small. Then the heavier nuclei could be consid-
ered as a fixed in CL space. From the other hand,
the Hydrogen nuclei is lighter, and could be not
considered as fixed in the space. We see, that Ryd-
berg constant approaches the maximum value at
heaviest atom and is smaller for the Hydrogen. For
this reason the reduced electron mass is used in the
Eq. (3.19.a) (the bracket term). While the Rydberg
is proportional to the photon energy it appears, that,
the CL pumping efficiency is highest, when the
electron circle around a stationary fixed nucle-
us. 

The above made conclusion is confirmed,
also by the Positronium transition , dis-
cussed in §3.17.4.

Let us find the physical meaning of the elec-
tron reduced mass. The bracket term of the electron
reduced mass, can be presented in a form:

                                 (3.21.b)

where:      
     is the CL pumping efficiency   (3.21.c)

 - is the mass of the heavier nucleus
around which the electron is circling orbiting
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Then the expression of the Rydberg constant
takes a more general form, in which the CL pump-
ing efficiency is explicitly involved.

                                         (3.21.d)

Equation (3.21.d) shows, that the Rydberg
constant apart of the lattice parameters, depends
only of the pumping efficiency, determined by the
involved masses.

The pumping efficiency for the Hydrogen
atom is 0.9994557, while for the Positronium it is
0.5.

 We may summarize that:
• The electron exhibits a quantum motion due 

to the interaction between SPM MQ fre-
quency and the proper frequency of the elec-
tron-positron system

• The quantum levels of the electron velocity 
are defined by kinetic energies at which the 
electron exhibits screw type of motion with a 
less resistance

• The rotational frequencies for the quantum 
levels are subharmonics of SPM MQ fre-
quency, including, also, the first harmonic.

• The quantum levels of the electron velocity 
define the bottom levels of the Hydrogen 
series and are relevant also for other atoms.

• The Rydberg constant is directly defined by 
the first harmonic quantum motion (optimal 
confined motion)

• The CL pumping effect obtains a maximum 
value, when the electron is orbiting in a fixed 
frame.

3.9.3 Quantum properties of the positron sys-
tem

We saw that the oscillations with small am-
plitudes are relevant for the quantum motion of the
electron at suboptimal velocities. The same ampli-
tude conditions should be relevant for the positron
quantum motion. The confine motion of the
positron has some similarities and some differenc-
es in comparison to electron. 

The similarities are the following:
- same boundary conditions
- a similar screw type of motion
The differences are the following:

- The external motion environment of the os-
cillating core is different

- The proper frequency is different
In a first gland, the efficiency of the positron

quantum motion could look much lower, in com-
parison to the electron, because the the system has
only one internal RL(T), and the intrinsic matter of
the central ore is much smaller. This, however, is
partly compensated by the increased hummer drill
effect, as we will see from the following analysis.

When the positron system oscillates inside
the electron with small amplitudes, the central core
oscillates in slightly negative external field, as was
shown in Fig. 3.9.b. 

The oscillating conditions of the central core
of the free positron, however, are different. Now,
the external negative field is missing, and the gra-
dient of the positive E-field falls to zero. For small
amplitude oscillations of the free positron, we may
accept, that the central core oscillates in environ-
ment of MQ nodes. But the SPM frequency of the
external and internal MQ’s is one and same. Then
the oscillating central core will exhibit stronger
hummer drill effect. This will partly compensate
the efficiency of the free positron quantum interac-
tion in comparison to the electron. The optimal in-
teraction will be obtained at such positron rotation,
at which the phase difference between the PP SPM
vector and the proper frequency of the free positron
is zero. To obtain this motion conditions we need to
know the free positron proper frequency. Experi-
ments with positrons provide confidence about its
inertial mass, but this is not enough in order to ob-
tain the proper frequency. The Plank’s constant
may have different value, when estimated by the
positron parameters (and this will become evident
by the course of BSM.) So in first we will make
some theoretical analysis, and then we will look for
experimental confirmation.

Let make comparison between the electron
system and the free positron in order to find the
conditions, when their central cores exhibit one and
same resistive momentum. Let analyse in first, the
motion of both systems when they have one and a
same tangential velocity of their external shells.
We may use the classical equation for the proper
frequency of oscillation system:

                                           (3.21.c)
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The inertial mass of the central core should
contribute to m - parameter, while the repulsive
forces between the negative core and external field
to the spring constant k - parameter.

a) Inertial considerations of positron- core
system

In the case of electron, the positron shell,
moves in a CL domain with SPM momentum,
which according to Eq( 3.5) (see also Fig. 3.5) is
given by: 

In this case the central core is carried by the
positron shell, and for small oscillations it does not
feel the above SPM momentum. In case of free
positron, however, the core will exhibit momentum

. Then its inertial interaction appears lower,
and it will behave as a lower inertial mass, that ac-
cording to Eq. (3.21.c) will means a higher proper
frequency. 

b) k - parameter considerations
Here we have to consider two electrical com-

ponents: external component and internal one - re-
lated to the trapping hole effect. 

In a case of internal positron, the negative
core exhibits a slight repulsive force from the ex-
ternal negative field of the electron (see Fig. 3.9).
In a case of free positron, the external field is posi-
tive. The E-field interaction of the central core with
that field is not so strong, because the core does not
posses RL(T). However it may obtain slight exter-
nal attraction due to the positive external field. The
internal trapping force, however is not affected and
predominates the external one. The IG(CP) forces
are also unchanged. It is obvious, that the k param-
eter in case of internal positron will be larger, than
for the free positron.

We see, that the factors m and k, both change
in a same direction so: the proper frequency of the
free positron is expected to be lower, in comparison
to the internal one. In fact we could not expect
much change of the m factor, between both cases,
because, the IG(CP) is focused onto the central
core and is much stronger. 

In order to find out what is the possible oscil-
lating frequency of the free positron we will ana-
lyse the oscillations of the positronium, known as
Ps  13S1 - 23S1. It leads to emission of a photon at
wavelength of 243 nm. This positronium is a result
of common oscillation motion between a normal
electron and a free positron. The energy of the

emitted photon is 5.1 eV. The only possible quan-
tum energy level transition for this value is   (13.6
eV - 3.4 eV)/2 = 5.1 eV. It is not difficult to guess,
that the electron participate in the oscillations with
its optimal quantum velocity, corresponding to en-
ergy level of 13.6 eV. Then the positron energy is
3.4 eV.  Obviously this is a velocity with a stronger
larger quantum effect. The oscillation process,
leading to a photon emission is analysed in more
details in §3.17.3. The level difference is divided
by two, because, the two masses are similar. This
reduces the efficiency of the lattice pumping by a
factor of two in comparison with the Hydrogen se-
ries, where the mass ratio of proton/electron is very
large and the proton could be considered as a sta-
tionary body.

Other emissions from the above mentioned
combination are not observed. It is reasonable to
not expect another quantum energy levels, because
the interaction properties of the central core in
comparison with those of the positron shell are
very week. The boundary conditions for the quan-
tum motion of the electron and free positron are
one and a same. Then the energy level of 3.4 eV
should correspond to the optimal confined motion
of the free positron, which means that its oscillation
frequency is twice larger than the first proper fre-
quency of the normal electron, or twice the Comp-
ton frequency.

                                            (3.22.a)
        where:  - is the proper frequency of

the free positron system
The relation (3.22.a) is confirmed also by the

fractional quantum Hall experiments, discussed in
Chapter 4.

Consequently, the free positron exhibits a
quantum motion at 3.4 eV, due to the interaction
between the CL node SPM and the proper fre-
quency of the system.

The maximum confined velocity of the
positron appears to be one half of the optimal con-
fined velocity of the electron. The positron may not
have another quantum velocity and energy level in
CL space with normal ZPE, due to the decreased
quantum effect in comparison to the electron.

khbpt Rmb )( )

pt Rmb )( )

νpc 2νc=
νpc
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3.10 Electron acceleration
For velocities higher than the optimal one, the

electrons can be accelerated by two methods: by
electrical field or by magnetic wave. There are two
distinguished features between both types of accel-
eration.  

In case of electrical field acceleration, (con-
sidering a symmetrical field), the external field pull
the electron by its surrounding E-field. The accel-
erating force may be considered as applied at the
electron equivalent radius. In this case the stretched
helical trajectory have the same handedness as the
second order handedness of the electron. 

In case of wave type acceleration by magnet-
ic field, the accelerated field interacts only with the
electrons E-field lines terminated with a MQ’s. For
velocities much higher than the optimal one, these
MQ’s are arranged in very stretched helical trajec-
tories, which tends to delay from the AC phase of
the magnetic field. The alternative magnetic field is
synchronized with the electron momentum veloci-
ty in order to not miss the phase of the electron
proper frequency. At large velocity however, the
quantum effect of the electron oscillation is small.
Then the proper frequency could not be kept syn-
chronized to the SMP MQ frequency of the accel-
erating field. As a result a squeezing effect may
appear constantly between them. This effect, may
reduce the reaction of the accelerated electron that
will appear as an opposite magnetic field (as in the
selfindunction). Due to reduced reaction, the accel-
eration effect  appears more effective. In very high
velocity may appear also, that the electron could
rotate in a reversed direction. (In this case the effect
is similar as mechanical acceleration of screw with
larger step to diameter ratio by sliding nut). 

From the provided simplified analysis it ap-
pears that a high energy (velocity) acceleration of
an electron beam is more effective when provided
by alternative magnetic field. This type of acceler-
ation is used in the synchrotron accelerators.

3.11 Magnetic moment and gyromagnetic fac-
tor of the moving electron

3.11.1. Magnetic moment
The confine motion of the electron means,

that it rotates continuously. Consequently, its elec-

trical field creates waves in the CL space. The
waves accompany the moving electron as closed
magnetic lines,  formed of connected in loops mag-
netic protodomains. In uniform, not disturbed by
other particles CL space, the magnetic lines are cir-
cles around the electron trace. The direction of the
induced magnetic field is determined by the axial
direction of the “screwing” electron.  

For electron moving with velocity near the
optimal one, the motion behaviour is strongly in-
fluenced by the oscillation properties of the elec-
tron. When bundle of electron is moving with such
velocity, the common synchronization effect is also
very strong. This provides a strong modulation ef-
fect on the lattice space, appearing as an magnetic
field. 

Let analyse the magnetic disturbance of the
CL space from a single electron, moving with the
optimal confine velocity, corresponding to energy
of 13.6 eV. For one full turn of the external shell,
the electron-positron system makes one cycle,
whose period is the Compton time. The induced
magnetic field in this conditions is characterized by
the electron magnetic moment. It is given by the
equation:

   [A m2]                     (3.23)

where: q - is the electron charge, h - is a Plank
constant, me is the electron mass and  - is the fine
structure constant.

The electron magnetic moment is considered
anomalous, so far, because of the second term in
the brackets. But according to BSM model of the
electron,  is completely determined by the elec-
tron radius R and step se (see Eq. 3.8). Consequent-
ly, this term shows  the contribution of the helical
step of the electron, due to the screw type effect.
The electron motion at this velocity is affected
stronger and the effect is detectable. Therefore,
the magnetic moment of the electron suggested
by BSM  should not be considered anomalous.

Let to explain, why the magnetic moment is
increased when  is larger. The dependence of ,
from the  ratio R/se was given by Eq. (3.8). For de-
fault value of , this ratio is:

. Fig. 3.16 shows a plot of the fractional
change of , for R/se range from 21 to 23.

µe
qh

4πme
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2π
------+ 
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α

α

α α

α
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                                    Fig. 3.16
         ratio as an estimation factor of the fine 

                  structure constant

We see, that for small range of Rc/se, the
change of  is linear but not perfectly. The physi-
cal explanation of the Rc/se change and its direct ef-
fect on the  magnetic moment is a following:

The electron parameters: Rc, re, se, are de-
pendable on the forces balance, between the inter-
nal RL(T), external CL space and the helical core
bending (see Eq. (2,8)). In this balance the strong
IG forces are involved including the electrical field
created by RL(T) lattice of the electron’s external
shell whose energy is included in the IG energy
balance. The balance causes adjustment of some of
the parameters of the helical structures. In this ad-
justment, the second order parameters as the radius
Rc and the step se are stronger affected than the first
order ones (this was discussed in §2.8, Chapter 2).
Therefore, if the CL space parameters are changed
(for example the node distance), the twisting of the
internal rectangular lattice will be affected. This
twisting of RL controls the angle of the external E-
field lines, emerging outside of the helical shell.
Consequently, the magnetic moment is dependent
on the RL twisting and the second order step se.

The magnetic moment is a measurable pa-
rameter.

3.11.2 Gyromagnetic factor
Firstly we must emphasize the differences

between two different parameters related to the gy-
romagnetic properties of the electron: a gyromag-
netic factor and a gyromagnetic ratio.

The gyromagnetic ratio is a ratio of the mag-
netic moment to the spin. It is given by the equa-
tion: 

      (3.23.a)

The parameter gyromagnetic factor, , is re-
lated to the gyromagnetic ratio, but it is dimension-
less. Its relation to the Bohr magnetic moments, ,
is given by the equation:

                        (3.23.b)

where:  [J/T] - the mag-
netic moment of the electron, h - is the Planck’s
constant and me - is the mass of the electron.

In the conventional physics, the gyromagnet-
ic factor is theoretically evaluated and then experi-
mentally measured with tremendous accuracy.
This means that it is a real physical parameter of the
electron. It is dimensionless parameter as the fine
structure constant. According to the theoretical
treatment, the g factor is expressed by a series con-
taining only the fine structure constant as a physi-
cal parameter. So it is real QED parameter. From
the point of view of BSM, it is not difficult to
guess, that this parameters is defined from the ratio
between the helical step an the small electron radi-
us.

                       (3.23.c)
Consequently, the  factor allows us to deter-

mine the small electron radius (as the helical step se
was determined in §3.6).

One may argue, that the relation (3.23.c) is
not exactly a same for the free positron, because

, while their inertial masses are equal. In
case of positron, however, number of other factors
should be also considered:  the different proper fre-
quency (defining different optimal confined veloc-
ity), the different physical dimensions, the different
intrinsic matter densities of the right and left prisms
and the different intrinsic time constants of the two
substances of intrinsic matter.

One additional reason that the simple equa-
tion (3.23.c) is directly valid for the electron,
comes from the fact that the Planck’s constant is es-
timated by the electron parameters.

Summary:
• The magnetic moment of the electron is a 

parameter expressing its spatial and velocity 
stabilizing properties. Its large magnetic 
moment (in comparison to the proton’s one) 
is  a result of its open helical structure,  the 

Rc/se

α
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equality between the core length and  
and the quantum interaction it exhibits with 
the CL nodes.

• In absence of magnetic field, the large mag-
netic moment of the electron assures its 
straight forward motion despite the displace-
ment of the CL nodes. In environments of 
external magnetic field, the magnetic 
moment causes the electron to perform a 
motion along a cyclotron curve.

• The gyromagnetic factor is a parameter of 
the electron structure. It appears to be a 
ratio between the helical step of the electron 
and its radius.

λSPM
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