BSM Chapter 3  Electron system (electron)

Chapter 3. Structure and physical
parameter s of the electron

The electron and positron appear to be the
smallest stable elementary particles possessing an
elementary charge. The electron is a compound
system, consisting of three helical structures and
possessing two proper frequencies (while the free
positron possesses only one). Investigating the be-
haviour of the electron we may understand the
complex interaction processes between helical
structures in the CL space. In the same time the
electron may play arole of atest probe for estima-
tion of the basic CL space parameters. Due to its
complex structureit isreferenced in some places as
“electron system”.

3.1 Electron structure and basic features.

3.1.1 Structure configuration

The electron is a compound helical structure
of type: H3: -(+(-), S0 it is composed of three single
coil helical structures.

The configuration of the electron was already
shown in Fig. 2.13 a. In Fig. 3.1 a sketch of the
electron is shown and the basic dimensions are de-
noted by letters. We will use this notations later in
order to determine the physical dimensions of the
€lectron components.

Fig. 3.1
Sketch of the electron’s structure

The electron consists of an external negative
shell and an internal positive shell with acore. Both
shellsinclude ahelix asaboundary enclosing inter-
nal RL(T) structures. The positive shell with acore
is the positron (Fig. 2.13.c). The intrinsic gravita-
tion of the electron is not strong enough in order to
keep the twisted 1G field locked. So the CL space
disturbance propagates in a far field, i. e. the sys-
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tem exhibits a charge. The external E-filed lines
were shown in Fig. 247A and discussed in
§2.15.2.2. The electron has two interna rectangu-
lar lattices of twisted type (RL(T)). The external
helical shell serves as a boundary of the negative
RL(T), whilethe positron helical shell - aboundary
of the positive RL(T). Due to a different helicity
the both RL(T) practically are not connected. This
isillustrated by Fig. 3.1.A.

central cote

Fig. 3.1.A
Layersof both internal RL(T) structures
of the electron

Figure 3.1.A shows only the radia layers
connecting to the boundary helical cores. Thelayer
1 (negative) is connected to the external shell,
while the layer 2 (positive) - to the positron helical
shell. The intermediate radial layers (between the
helical coils) are not shown, but they follow the
same helical configuration. Their axial configura-
tion was aready shown in Fig. 2.16.b and 2.18.b.
The negative central core with thickness of 3
prisms diameter, is positioned along the axis of the
trapping hole. It is evident, that the interaction be-
tween IG(CP) of the two RL(T) is minimized due
to the following two features:

- concentric symmetry

- helicity mismatch (between the right and
left helicity of the both RL(T)s).

The shown configuration allows a free axial
motion of the positron inside of the external nega-
tive shell. At the same time, the helicity mismatch
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and the self adjusted concentric symmetry, provide
conditions of ideal bearing. A similar freedom and
motion conditions possesses the negative core in-
side the trapping hole of the positive RL(T).

In some conditions of extremely high veloci-
ty, or operation in low ZPE CL space domain, the
electron may lose its internal positron and convert
to adegenerated electron. The degenerated electron
is shown respectively in (Fig. 2.13.b)

Itismore difficult for the positron to looseits
central core, becauseit isvery thin (3 prisms diam-
eters) and itsinteraction with the external CL space
is much weaker. The degenerated electron or
positron, however, preserve their internal RL(T),
and consequently their dimensions and second or-
der helicity. These features allows them to recom-
bine again in anormal electron. If the central core
is lost, it could be regenerated by the trapping
mechanism, from negative CL nodes. The oscilla-
tionisillustrated by Fig. 3.2.

Fig. 3.2
Oscillating electron

We can distinguish two simple oscillation
systems: “electron shell - positron”, and “positron
shell - central core”. Asaresult, the electron oscil-
latesin acomplex way. It isevident, that every one
simple system has its own proper resonance fre-
quency.

3.1.2 Proper frequency of the oscillating system
“electron shell - positron”.

Let analyse, first, the system “electron shell -
positron”, in order to determine what kind of fac-
tors define the proper resonance frequency.
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From a first gland, the resonance frequency
should depend on two types of interaction forces:
the intrinsic gravitation between the electron and
positron from one side, and the interaction between
the EM field of the system and NRM and SPM vec-
tors of CL space, from the other. The IG (CP) field
between the electron shell and the positron is spa-
tially structured by their RL(T). The both lattices
although have opposite handedness and the radial
stripes meet themselves at angle, which is in the
range between 170 and 150 deg (see Fig. 3.1.A).
This angle is determined by the radius to helical
step ratio of the electron structure as a single coil
SOHS. When the system oscillates with its proper
frequency (Compton frequency), the individual
vectors of the both type radial stripes meet them-
selves for a very short time. Having in mind, that
the calculated xyz node distance of CL spacewasin
the order of d,, = 1.0975x10”° (m), and the central
axes of the electronis 2nR_ , we estimate that asim-
plecell from apositive RL(T) could bealigned at a
single cell of anegative RL(T) for atime no longer
than 1E-40 sec. The prism diameter is at least 12
times smaller than the minimal node distance of
RL. So the time during which the radial stripes be-
tween both RL(T) may appear aligned is extremely
short and the |G interaction between both RL(T)s
may not take place. This means that the IG field is
not able to propagate between thetwo RL(T) lattic-
es. As aresult of this, the gravitational mass of
the positron with its RL(T) appears hidden for
the external observer. The positron E filed is
propagated by the RL(T). When the positron isin-
side the electron, its positive field could not pass
through the RL(T) of the electron shell, because of
the different handedness. So the E filed of the
positron in this case also appear s hidden.

L et analyse now the |G field leaking between
the nodes. If the electron overall shape, for exam-
plewas not acoil but straight compound FOHS, the
leaking I G field would be different for a case when
the positron isinside, and when part of it isoutside
of the electron’s shell. But for the coil shape as
shown in Fig. 5.1 the partially coming out positron
core does not go away from the electron’s shell.
Hence, the returned forces for this kind of shape
will be significantly reduced.

From the considerations, discussed above, we
may accept that the resonance frequency of the
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electron depends mostly on the EM interaction
with the Cosmic Lattice. This conclusion will be-
come more more apparent in the next chapters of
BSM.

When the electron oscillates, a portion of a
positive charge aternatively appears on both sides
of the electron. The interaction of this charges with
the lattice in fact influences the motion of the
whole electron system.

The dependence of the electron resonance
frequency from the CL space features at different
ZPE complicatesthe analysis. However, when con-
sidering itsmotion in CL space of normal ZPE and
constant node distance, the analysis is simplified,
and the electron resonance frequency can be con-
sidered very stable. In this and following chapters,
we will see, that in all cases of photons generation
and detection, the electron system isinvolved.

The quantum feature of the electron could not
be explained if it is considered only as a passive
system. The electron self-energy is adiscussed top-
ic, now, in the modern physics. Some quantum
processes without such energy could not be ex-
plained. The BSM model of the el ectron showsthat
it has the ability to store energy. We can distin-
guish two different energy “reservoirs’, capable to
store kinetic energy. Thefirst oneisthe oscillation
energy between electron’s negative RL(T) lattice
and the internal positron. The second one (much
smaller) is the oscillation energy between the
positron positive RL(T) lattice and the central neg-
ative core.

The total kinetic energy of the oscillating
electron interacts directly with the CL space envi-
ronment by inertial and EM fields.

Experimental evidence exists about the abil-
ity of the electron to accumul ate energy after it has
been dumped. Such conditions are created in ex-
periments observing the transition between the nor-
mal and the superconductivity state of the matter.

The superconductivity will be discussed in
details in Chapter 4. Here only some features will
be mentioned. In the superconductivity state of the
matter, where CL domains possess a ZPE energy,
the positron could come out and can be attracted
externally to the electron shell. In conditions of low
ZPE, theinternal energy stored inthe RL(T) can be
dumped. When the ZPE is gradually rasing to a
normal value, the electron system recombines, but
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it needsto restore its lost energy. So if the conduc-
tor temperature is elevating slowly, the electron
heat capacity exhibits a peak. The peak, known as
electronic specific heat coefficient is clearly ob-
servable in the experiments. Figure 3.3 demon-
strates this feature for one type of superconductor
(BSM interpretation).
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Fig. 3.3
Specific electronic heat coefficient in
function of the superconductor temperature
(Plot datafrom of J. W. Loram et al., 1997)
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According to BSM theory, however, not all
the energy of the specific heat goesfor refilling the
electron self energy. Part of it goesto refill the ZPE
of the domains inside the conductor.

When the electron isin motion, driven by ex-
ternal field, it oscillates and automatically keepsits
internal energy at nominal value. If the electron has
a very low velocity (approaching zero), then the
stored energy isstill ableto modulate the CL space,
causing an electrical field. The stored energy pro-
vides momentum, which keeps the two subsystems
in continuous motion. So thisenergy isvery impor-
tant factor, influencing the system behaviour in a
CL space.

Analysing the dynamics of the electron-
positron oscillationswe see that: When the positron
Is inside of the electron shell, the field of its
RL(TP) is completely shielded, so it could not ex-
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hibit a static charge. When it is oscillating, howev-

er, conditions for charge appearance occur

periodically from both ends of the electron shell.

The oscillating “ electron - positron” system inter-

acts with the CL nodes, which are congregated in

magnetic protodomains, synchronised by the SPM
frequency. In such aspect, the SPM frequency ap-
pears a quite strong factor. In Chapter 2 we saw,
that it is responsible for the quantum waves. It is
enough strong factor able to affect the oacillational
motion of the “electron - positron” system. The
most important common feature between the CL

Space parameters and the electron is:

» Thefirst proper frequency of the electron
system (electron shell - positron) isequal to
the CL node SPM frequency. In the Earth
gravitational field these two frequenciesare
equal to the Compton frequency.

* Theabovefeature meansthat the energy of
the oscillating electron system is supplied
directly by the CL space ZPE viaresonance
transfer. Consequently, in CL space envi-
ronments, the energy reservoir of electron
system isalwaysfilled up.

Let imagine that an electron is put in a CL
gpace with constant spatial and time parameters,
but away from any gravitational or EM field. We
may call such a system a fundamental oscillator
and may use one of its parameter, namely the first
proper frequency as a stabilized frequency etalon.
Its period could serve as a time base for investi-
gation of the interaction between the helical struc-
tures and the CL space, so the CL space parameters
to be estimated quantitatively. We may call the fre-
guency of such electron a fundamental frequen-
cy. Despite the fact that it is not a primary
frequency etalon (aswewill seein Chapter 12) it is
quite convenient for exploring the CL space param-
eters.

The proper frequency of such system is equal
to the SPM frequency of the CL node, which is
equal to the well known Compton frequency (valid
for the Earth gravitational field).

Vep = Vepm = Ve (31)

where: v, - is the proper frequency of the
electron shell - positron, v, -is the Compton fre-
quency

Therelation (3.1) will become more apparent
through the course of the BSM theory.
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The Compton frequency is estimated by the
Compton wavelength: v, = c/a, (3.1.9

where: 1. - isa Compton wavelength, ¢ - is
the light velocity

It is known (from all physical courses) that
the Compton wavelength is given by Egs. (5.1):
A = ic = 24263x 1012 M (3.1.b)

where: h - isthe Plank’ s constant

M, - isthe mass of the electron

The fundamental frequency appears more
genera parameter, than the Compton one. The fun-
damental frequency was defined for electron in CL
space away from heavy objects, while the Compton
frequency is measured in the Earth gravitationa
field. Secondly, the electron massisinvolved inthe
determination of the Compton frequency. The mass
of the charged particles may have mass deficien-
cy, dueto the charge potential field in CL space, in
comparison with the neutral particle (as the neu-
tron). This possibility, however, is not enough in-
vestigated in BSM theory and we will rely on the
estimated Compton frequency. Despite the fact,
that the Compton frequency is estimated in the
Earth gravitationa field, we will use it instead of
the fundamental frequency. For the purpose of
our analysis we will accept that the above de-
fined fundamental frequency is equal to the
Compton frequency and the fundamental peri-
od isequal to the Compton time.

Vo=

= 1.23559 x 1020 Hz (32)

(3.3)

t. =

VC

i:vic = 8.0933x 102! SEC
From the provided so far analysis, we may

summarize the basic features of the electron:

* In CL space with normal ZPE, the electron
possesses internal stored energy. Thisenergy
keeps the oscillations of the electron subsys-
tems.

» Theelectron obtains a proper resonance fre-
guency equal to the SPM frequency of the
CL space.

» The adjustment of the electron proper fre-
guency to the SPM one, may provide expla-
nation of one of the effects of the General
relativity: the gravitational redshift of pho-
tons emitted in a strong gravitational field.
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3.1.3 Proper frequency of the oscillating system
“positron-central core”.

The proper resonance frequency of the
“positron - central core” system appears different
from the first proper frequency of the electron due
to its different volume and core dimensions.

When the positron is free (outside of electron
shell), its behaviour is similar as the oscillation
system: “electron shell - positron” Its proper fre-
guency, however, is different, due to its different
externa environments. The behaviour of the free
positron will be discussed in §3.9.3. It will be
shown, that the positron - core proper frequency is
related to the Compton frequency by the simple
expression:

Vpe = 2v, - for free positron (3.3.9)
where: v, - is the proper frequency of the

system positron- - central core.
Additional difference appearsfor oscillations
with small and large amplitudes, when the
positron is inside of the electron shell. These fea-
tures are discussed in 83.5, §3.9.3 and in Chapter
4. The proper frequencies for smaller and larger
amplitudes are the following:
Vpe = 3v, - for positron inside of the electron

(3.3.b)

(small amplitudes)

Vpe = 2V, - for positron inside of the electron  (3.3.C)

(large amplitudes)

The proper frequency of the positron inside the
electron in a case of large amplitudes is the same
as the proper frequency of the free positron. This
conclusion will become more evident in the course
of the BSM theory.

3.2 Electron oscillations and lattice pumping
effect leading to a photon emission. “Annihila-
tion” or change of state of the matter.

We can distinguish two types of electron fre-
guency oscillations: weak (small amplitudes of os-
cillation) and strong (large amplitudes).

Oscillations with weak amplitudes appear,
when the electron is forced to move in the lattice
gpace. The amplitudeis much smaller than 180 deg
deviation of the positron in comparison to the elec-
tron shell. It does not lead to generation of EM
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wave (photon). The oscillations have small ampli-
tude, induced between the interaction of the elec-
tron proper frequency and the SPM frequencies of
the CL nodes. Thepositron in the activated electron
oscillates reversibly around the middle position.
When aportion of the positron goesout it isnot any
more shielded by the electron externa shell and
portion of positive charges appear periodically in
both sides. The invoked alternative field interacts
with the external negative field created by the elec-
tron shell, while the latter interacts with the CL
space. The electron in this case induces waves in
CL space. The interaction between the induced
waves and SPM frequency of CL domains exhibits
aquantum effect. Itsfeatures are discussed later in
this Chapter.

Inthe strong amplitude oscillations, theam-
plitude may reach 180 deg and over. So thistype of
oscillation may lead to a separation of the positron
from electron system or recombination, as well.
Such separation or recombination is always ac-
companied with absorption or emission of high en-
ergy photons. Oscillations with strong amplitudes
appear in many observed physica phenomena:
electron - positron “annihilation”; 1‘S, singlet of
parapositronium activated by different methods: by
X or gamma rays, by bremshtrahlung, by high en-
ergy electron or positrons and so on. It could be ac-
tivated also by acollision of accelerated electron to
atarget or a collison with a high energy particle,
including aquasiparticle wave. All these processes
are related with emission of two or three gamma
photons, depending of the amount of activated en-
ergy. Let analyse the dynamical behaviour of the
energy activated electron, leading to emission of
two gamma photons.

We can analyse the example of interaction
between a normal electron and a positron. They
may haveinitial velocitiesor may start fromrest. In
both cases they will have different potential ener-
gies. Let assuming that the potential energy (equal
to the energy of activation) is equal to 511 keV.
When the both system accelerated by the attractive
Coulomb forces approach each other, the external
positron will be directed (by the interacted proxim-
ity electrical fields) to enter into the electron sys-
tem and to replace the internal positron. Although
its energy does not permit to expel the internal
positron completely. Asaresult, the both positrons
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will start to oscillate in the inside hole of the elec-
tron shell. Initially the external positron will not hit
the helical shell of the internal one, because of the
repulsive fields around their edges, so some gap
could exists. Once they start oscillations, this gap
will be eliminated, because the positron shells
around both ends are always inside of the electron
RL(T) hole, where no space for stable EQ forma-
tion exists. Then the both positrons will oscillate as
asingle structure. As aresult of this, the amount of
the positive charge will oscillate alternatively at
both sides, and they will interact with the external
shell negative charge. In fact the electron system
usually is not fixed in the space and both the
positron and the external shell will oscillate around
a common equilibrium position. The periodically
appeared positive charge and the moving negative
chargewill cause a lattice disturbance. Thisdistur-
bance however will be not propagated far from the
system, because the rel ative speed of the oscillating
structures, aswe will seelater, is closeto the speed
of light. The oscillation energy from asingle cycle
is very small in order to overcome the intrinsic
gravitation and to escape from the system, so it is
accumulated in the surrounding CL space. The os-
cillating system in such way provides some kind of
energy of the surrounding CL nodes, increasing
their ZPE. We may call thiseffect alattice pump-
ing effect. (A pumping effect will be also discussed
later when explaining the photon emission process
in the atoms). As aresult of this, a pumped energy
becomes accumul ated in both sides of the electron.
Knowing, that the EQ only could handle an excess
energy, the latter will produce a large number of
EQs of both types (positive and negative). At the
same time, the pumping is an energetic process and
should have opposite reaction from the CL space.
This means that, the CL space should have a satu-
ration number for the number density of the gener-
ated EQs for unit volume. Consequently the
increased amount of both type EQ will continuous-
ly reduce the spatial modulation properties or E-
fields of the oscillating system., and the efficiency
of the pumping process. We see, that conditions ex-
ists for multiple oscillations with gradually re-
duced amplitude. During the duration of this
process the proper resonance frequency of the elec-
tron, however, is not changed, because it has
enough stored internal energy. When the pumping
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process falls below some critical level, the accu-
mulated energy in the CL space domains from the
both sides of the electron, will be suddenly released
as two quantum waves (photons). Note, that the
pumping velocities of the electron positron shells
had initial value of the linear light velocity. The
pumping process in this case is optima and com-
pletely symmetrical. The released two quantum
waves have 180 deg direction and are orthogonally
polarized. They arefirst harmonicsof the SPM fre-
guency, every one possessing an energy of 511
keV. The both waves are orthogonally polarized
because this is a condition for easier separation of
the pumped energy from the both sides of the elec-
tron. The quantum waves are emitted when the ef-
fective strong type of oscillations are attenuated.
They are neutral type waves, i. e. equally affecting
the right and left handed nodes.The time of the os-
cillations and thefinite time required for the energy
mixing between the both types of nodesis obvious-
ly related. It is determined by the intrinsic property
of the CL space and the electron. This time is
known as a Positronium life time, and its value in
vacuum is 145 psec.

But what happens with the final state of the
system? At the end of the oscillations the half of
both positrons are equally out of the external elec-
tron shell. So the amount of the negative field lines
from the electron external shell is equal to the
amount of the positive field lines from the half of
both positrons. The both type of the field lines are
interconnected in proximity, and the far electrical
field disappears. The obtained new structureisrel-
atively stable and itsmassisequal to the sum of the
electron and positron masses. Such small neutral
mass will appear undetectable. For this reason it
seams, that the electron and positron are annihilat-
ed. In fact thisisonly a change of the state of the
matter.

We described one type of pumping effect be-
tween small particleswhose peripheral part is mov-
ing with a light velocity. In atoms where the
electronismoving in the electrical field of the pro-
ton and the I G field is much stronger, another type
of pumping effect exists. It will be discussed in
Chapter 6.
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3.3 Confine motion of the electron. Electron
spin.

One important feature of the electron is its
confine motion in the lattice space. One factor fa-
cilitating this type of motion is the large R/r, ratio.
The main factor for the screw like motion, howev-
er, is the interaction between the oscillating (sta
tionary) CL nodes from one side and the induced E
field by the interna RL(T) from the other. This
field is propagated by the BSM interaction of 1G.
This interaction causes a formation of negative
EQs, arranged in a spatial helical configuration of
same handedness as the RL(T). This configuration
has an additional second order helicity due to the
second order helicity of the electron. As a result,
the whole electron system rotates with a spin direc-
tion determined by its second order handedness.
The positron system has the same second order
helicity and handedness as the electron system. So
the electron system and the free positron, both, a-
ways tends to perform a screw like type of motion.
This type of motion we call a“confined motion”.
The electron structure ismoving and rotating like a
screw. The efficiency of the confined motion de-
pends of two factors: the motion velocity and the
momentum interaction between the proper fre-
guency oscillations and the momentum of SPM
vector of the stationary nodes. In the case, when
the tangential velocity of the electronisequal tothe
speed of light (linear), the motion is called an opti-
mal confine motion. The corresponding axia ve-
locity of the electron is called an optimal confined
velocity. For velocities below the optimal confine
one, the electron motion iscompletely screw like.
For velocities above the optimal confine one, the
system exhibits aquas screw type of motion.

In a completely screw like motion, all the
points, lying on the central core pass through a
common helical trgjectory. Inaquasi screw type of
motion, every point of the central core has own hel-
ical trgjectory. In both types of confine motion, no
one point lying in the core curved axis could ex-
ceed thelinear light velocity. The axia electron ve-
locity for an optimal confined motion is 2.187x10°
(m/s), corresponding to an electron energy of 13.6
eV. The axial and tangential velocities for the two
types of confine motions areillustrated in Fig. 5.4.,
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where the electron is shown as a single coil, while
the trgjectory - by a dashed line.,
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Fig. 3.4
Two types of confine motions of the electron. The
electron is shown by ablueline and its trgjectory by a dashed
line

Figure 3.4.aillustrates a case with acomplete
screw type of motion at optimal velocity Vg,
while 3.4.b - a case with aquasi screw type of mo-
tion. For both cases the trajectory of the front end
of the electron is shown (dashed lines), with the
momentum position of the electron (thick blue
line). The axial and tangential trace velocities are
denoted as V, and Vy,, and their ranges are shown
below the drawing. Thevelocity vector V; indicates
the electron - positron oscillation.

Due to the interaction with the CL space, the
oscillating system “positron - electron shell”, in-
duces amagnetic field. Asaresult, the whole el ec-
tron system exhibits some small momentum with
alternatively changing direction. This could be at-
tributed to a el ectron spin. In normal motion condi-
tions, the spin should have one preferred direction,
determined of the conditions for motion with less
resistance. Then a question may arise: What isthe
physical explanation of the = spin value assigned
to the electron? To reply to this question, we have
to distinguish between three cases:

- electron spin when the electron isin a mo-
tion around the proton

- electron spin flipping in EMR technique

- electron polarisation

In Chapters 6, 7 and 8 we will see that the
proton hasits own handedness. The electron trajec-
tory appears as a closed loop curve (with a shape
like a digit 8) around the proton, so it also has its
own handedness. As aresult of this, two combina-
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tions are possible: (1) the electron close loop curve
and the proton are both with a same handedness.
(2) They both are with different handedness. As a
result of these, the Quantum Mechanical spin has
two values, which are known as + " spins.

In a conditions of normal motion of the free
electron, the phase of the two oscillating systems
“positron - electron shell” and “positron - central
core” are automaticaly adjusted for a less resist-
ance in the interactions with the CL nodes. Thein-
teraction energy of the first oscillating system is
much larger than the second one. In some experi-
ments like in EMR, the oscillating phases of the
both system may be temporally affected (so called
spin flipping)

In some motion cases, a collimated electron
(positron) beam is striking aplane under angle. The
reflected electrons (positrons) in this case exhibit a
strong polarisation. This effect, however, is not re-
lated with the same type of Quantum Mechanical
spin, which appears in the optical spectrum.. Ac-
cording to the BSM, it is a result of the off-axial
momentum obtained in the internal rectangular | at-
tice of the oscillating internal positron during the
impact. Thiseffect isexperimentally observed. The
obtained momentum is preserved and appears quite
strong, because the internal rectangular lattices
containsalargeintrinsic matter and the off-axis os-
cillationisalG type of interaction. Thiskind of IG
interaction through the RL(T) internal structure af -
fectsdirectly the external E-field of the electron, so
the oscillation energy is transferred to the elec-
tron’ selectrical field. Thisaffectsthe motion of the
electron in a way that its behaviour becomes de-
tectable. In the sametime, this effect showsthat the
internal RL(T) has some freedom to oscillate. Such
kind of oscillation may cause aminor change of the
gpatial geometry (po apparently the helical struc-
ture twisting) but the involved 1G field can accu-
mulate comparatively large energy. Consequently,
the electron and the positron may have ability to
storeinternal energy. Thisconclusion independent-
ly confirms the accepted feature of the electron to
posses a selfenergy.

The discussed so far basic features of the
electron are summarized below:

» Theeéelectron exhibits a confine (screw type)
motion in the lattice space
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» Theelectron possesinternal energy well. In
CL domain of normal ZPE, the stored
ener gy provides stable oscillations of the
electron system components.

* Theeffect known as* annihilation” of elec-
tron and positron isin fact a damped oscilla-
tion of the compound system “electron - free
positron”, terminating with emission of two
gamma photons at 511 KeV.

* Thephoton emission isa sudden release of
the energy pumped in the surrounding CL
space dueto the self dumped electron oscilla-
tions. Thereleased energy is propagated
through the CL space as a quantum wave
(photon).

* Thequantum motion of the electronisa
result of interaction between the compound
oscillating momentum of the electron system
from one side and the SPM vector of the sur-
rounding CL space, from the other.

» Theoscillating electron could be considered
as a fundamental frequency etalon, if placed
in CL space of normal ZPE, away from mas-
sive objects. Itsfrequency valuein the Earth
gravitational field isthe Compton fre-
guency. The fundamental frequency pro-
vides an absolute time base for analysis of
processes at atomic level in a frame of abso-
lute coordinates.

3.4 Electrical field of the electron at confined
motion

The electrical field of the electron is created
by the IG (TP) forces of the internal RL(T). This
forces form a highly ordered spatial field, which
modul ates the external CL space, causing aforma-
tion of electrical quasispheres in the surrounding
CL space. The field is different for the cases of
“static” (not moving) and “dynamical” (moving)
electron. The static case is mostly theoretical, be-
cause the electrons always have some velocities.

In a case of “static” electron, the electrical
field has a maximal radius, which is practically de-
termined, by the surrounding noise level, defined
by the noise of the “permittivity fluctuations’ of
the CL space

In a case of “dynamical” electron, the situa-
tion is different, and very dependable on the elec-

3-8



BSM Chapter 3  Electron system (electron)

tron velocity. Figure 3.4.A illustrates the
modulation of the surrounding CL nodes at the op-
timal confined motion of the electron (13.6 eV).

——
Fig. 3.4.A

CL nodes modulation at optimal confined

motion of the electron

Fig. 3.5 showstheradial configuration of the
same field by E-field lines. In thisfigure a diamet-
rical section dy with the orientation of thelong axes
of EQ is shown. These axes coincide with the E-
field lines, shown by dashed lines. The radial de-
pendence of the tangential node momentum also is
shown in the bottom part of the figure.

Let make analogy between the radial E field
configuration of the electron and the field configu-
ration of the first harmonic quantum wave (see
§2.11.3). The similarity between them are the fol-
lowing:

- They, both, have boundary conditions pro-
vided by MQ and determined by .,

- The E-field lines are aligned

The distinguishing features are the follow-
ing:

- Theintegrity of the E-filed in the quantum
wave is kept by the energy motion from node to
node. The both types of EQ are equally affected
(for aneutral wave) or complimentary affected (for
aquasiparticle wave)
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- The integrity of the electron E field is kept
by the IG(TP) field of its internal rectangular |at-
tice.
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Fig. 3.5
Radial configuration of E field of the electron
at optimal confined velocity (energy of 13.6 €V)

The magnetic boundary condition in both
cases is determined by the helical boundary wave-
length 4, , related to the Compton wavelength 2,
by the boundary factor k ., used in the relation
Ao = Mckie - It Was shown in Chapter 2, that the val-
ue k., = 4, matches well to the Rayleigh criterion
for detection of monochromatic wave by diffrac-
tion limited optics. In this Chapter we will show,
that thisvaluefitswell, also, to the quantum motion
conditions of the electron. From Fig. 3.4.1 we see
that, when the tangential velocity of the electron
central axis (curve) is equal to the light velocity,
any point of its external shell makes afull rotation
for one proper cycle. The length of this trajectory
per one cycleis equal to the Compton wavelength.
Then: A, = 2nR, = 27R (1)/Ky, , O

Rmp(1) = KppRe = 4R, (3.9
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where: R,,(1) - iSthe magnetic boundary ra-
dius for boundary conditions, equal to the size of
Apy (defined by the MQ).

L et to analyse the difference between E-field
integrity in a case of quantum wave, and in a case
of electron. In a case of quantum wave, the E-field
integrity is kept by the alignment of the EQ in hel-
ical trgjectories. The length of these trajectories for
one SPM cycle varies between 2, and &,, (for a
first harmonic quantum wave), depending of heli-
cal radius. We can distinguish two types of integri-
ty in the quantum wave: one - along the helical
trajectories and second - between them. Thisinteg-
rity, however, is realised in a cylindrical volume
with a radius equal to the boundary radius and a
volumelength of 1.. The electron has apretty large
ratio between the coil radius and the helical step
(thisratio is 21.8 and it will be shown in the next
paragraphs). While the circumference for the opti-
mal velocity isequal to a,,, if regarded asacylin-
drical volume, itslength is pretty short. Such space,
does not allows fulfilment of both types of E-field
integrities, as in the quantum wave. Consequently
only onetype of integrity is possible, and thisisthe
alignment of the EQ in field lines. One may argue,
that the negative EQ’ s may repel each other, as be-
tween two charges of sametype. Herethe situation,
although, isdifferent. In the case of induced EQ be-
tween two charges of same type, the synchroniza-
tion condition is not uniquely defined, because the
RL(T) of the both charges are not synchronize be-
tween themselves. In a case of one charge, al EQ
of same type are synchronized by the same source
- theinternal RL(T). Then the negative EQ are able
to influence stronger the neighbouring nodes of op-
posite handedness. So the latter get some comple-
mentary motions as apassive neighbours, but their
energy could not compensate the field of the nega-
tive EQ, directly induces by the RL(T). Saying in
other words, the induced EQ of same handedness
have a strong reference point - the negative RL(T)
of the helical structure, while the neighbouring
nodes of opposite handedness does not have a ref-
erence point.

All the field lines are connected to the inter-
na RL(T) of the electron. The EQ polarisation is
gradually changing from the strongest value, near
the helical shell, to weakest one, near the boundary.
The lines are bent and terminated at the boundary
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zoneby MQ (only for arotating electron). Thefield
line intensity is proportional to the polarisation of
EQ. Then one important feature emerges. The
electrical field lines of the electron are not con-
nected between themselves, and have a freedom
for taking a proper space position. This is very
important effect, because when the electron is
moving in not homogeneous CL space, as in the
metal crystals, its E-filed lines could automatically
sense the lower resistant domains. This effect pro-
vides one very important feature: a path sensing
property of the moving electron. The path sens-
ing property is related to the NRM cycle and can
operate faster than the quantum magnetic interac-
tion, that isrelated to the SPM cycle.

Theradial configuration shows, also, another
important feature: the angular frequency of the
rotating electron in the optimal velocity isequal
to the angular frequency of the SPM vector, as-
sociated to the MQ at the boundary zone.

In the bottom part of Fig. 3.5 the radial de-
pendence of the tangential node momentum is
shown. The same momentum is illustrated also by
arrowsin the radial section. The shape of the curve
presenting this momentum is determined by the
orientations of the EQs. The long axis of EQ has
larger momentum than the shorter one. The shape
of theradial dependence of the tangential node mo-
mentum is not calculated, but given as example.
Assuming that the node inertial massis one asame
for MQ and EQ, we may right:

p(R) = m,c = m2rnR./v.

pt(Rmb) = MpChp = mnanmb/Vc

While the above feature does not give a proof
that the ratio between R, and R, isequal to 4, the
quantum motion of the “positron - core” system
will help usto do this. Thiswill be discussed in one
of the next paragraphs. Apart of this, from the anal-
ogy with the first harmonic quantum wave, it ap-
pears that the following relation is valid.

(3.5)

Fig. 3.6 showstheradial dependence of some
field variables for the optimal confined velocity.
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Fig. 3.6
E-field parameters at optimal confined velocity

Theradia dependence of the E-filed intensity
isshown as E, and normalized to the maximum val-
ue at the radius equal to R.. By reshaping the shagd-
ed area of E, to rectangle, we obtain the equivalent
electrical radius. This radius will be determined in
83.11.

The E-field lineintensitiesin theinternal side
of the radial section are expected to converge to
zero (or MQ) at the centre. The reason for this is,
the diametrical opposite EQ, getting SPM modula-
tion of opposite direction.

So far, the radial section of the E-field in the
optimal confined motion of the electron was dis-
cussed. What are the boundary conditions and the
field configuration in the axial section? The E-field
configuration in the vicinity to the electron shell
hasbeen showninFig. 2.47.A, anditisgiven again
in Fig. 3.7. We should not be surprised, that some
of the internal E-field lines are connected. It was
mentioned, that this is possible, because they are
generated by one and a same internal rectangular
lattice, and the space is enough close. For the far
field this condition isdisturbed due to the accu-
mulated phase differencesin the EQ’s.
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Fig. 3.7

The boundary condition for optimal confined
motion isthe same, i. e. the circumference length
of the section is equal t0 igpy o - The boundary
section in a plane normal to the coil plane, howev-
er, is not circular, but dlightly elliptical. It is evi-
dent, that the concentration of E-field is aso not
homogeneous, but with different configuration. As
aresult of this, the density of the terminating E-
filed lines at the boundary sectionis not uniform as
intheradial section. The boundary sectionisillus-
trated in Fig. 3.8, where the denser E-field line ter-
mination is presented by denser points

| boundary
I section

-
|

(:;iﬁp
|
Fig. 3.8
Axial boundary section of the electron at

optimal confined velocity. The terminated
E-filed line density is shown as a point density

From the radial and axial E-filed line config-
uration we see, that at the optimal confined motion,
the boundary conditions zone has a shape of oblate
spheroid whose axis coincide with the rotational
axis of the moving electron. The density of the ter-
minated E-filed lines is larger at the equator and
lower at the poles. In such configuration, the E-
field lines still posses strong guiding feature, which
keeps the electron orientation in its screw type of
motion. In the next paragraph we will see, that at
motion with velocities lower, than the optimal one,
the circumference length of the central section is
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an integer number of A e, @nd the shape of the

boundary surface approaches a sphere.

Only for the region inside of the boundary
surface, the E-field appears not uniform. For a
“static” electron or moving electron with axial ve-
locity higher, than the optimal one, the E-field con-
figuration is different, and in many cases may
appear to have a uniform spherical shape. The hel-
ical configuration, although, is always preserved.

We may summarize:

» At optimal confined motion of the electron,
the E-field islocked in a boundary surface,
whose central sections has circumference
length of Agpy mo

* Insidethe boundary surfacethe E-field pos-
sesses a helical configuration

* Theboundary surface at optimal confined
motion has a shape of dightly oblate sphe-
roid, with maximum density of terminated
E-field linesin the equatorial region

» At velocity lower than the optimal one, the
boundary surface approaches the shape of
sphere.

* Thehigh efficiency confined motion of the
electron issupported by itselectrical field

» Themoving electron possessesa path sensing
property, dueto therelative freedom of its
electrical lines.

3.5 Dynamical properties of the electron in con-
fined motion

3.5.1 Oscillation properties at optimal confined
velocity

For electron moving with optimal confined
velocity the following relation (3.6) isvalid:

(rotational frequency of electron shell) = (electron-
positron proper frequency) = (SPM MQ frequency)

We may say, that the motion with an optimal
velocity is a motion at first harmonic of SPM (as
for the quantum wave).

The second two terms of the expression (3.6)
are always equal to the Compton freguency, inde-
pendently of the electron velocity. Thisis so, be-
cause the positron edge is moving in the proximity
E-filed of the external negative shell. This E-field,
influenced by the proximity IG(CP) filed, is “car-
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ried” by the electron negative E-filed and is not af-
fected by the electron velocity. Due to the
proximity of 1G(CP) filed, it has a constant value
for any sub optimal velocity. The central negative
core, also, oscillates in the negative E-filed in the
proximity of 1G(CP) filed.

The motion environments for the both types
of oscillating system areillustrated in Fig. 3.9.
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Fig. 3.9
Motion environments around the edges of the
electron

Figure 3.9.a shows the motion environment
of the positron and the central negative core. Figure
3.9.b shows the radial dependence of the negative
proximity electrical field Ey, in the motion region,
near the external electron shell. This field does not
fall completely to zero in the central core axis, but
to some residual value E, . The oscillation condi-
tionsthen aredifferent for the positron shell and for
the central core. If assuming alinear dependence of
Epr inside of radiusre, the positron E-filed will in-
teract with the negative proximity filed, lying
above 2/3E;, while the central core - with the field
Rres: Theinteraction forcesfor the positron then are
attractive but with a small cosine between the vec-
tors. Theinteractionforcesfor the negative coreare
repulsive but with acosine equal to zero. The elec-
tron and positron helical shell, however has their
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our energy storage system RL(T), while the central
core does not have such one.

The oscillation conditions of the positron -
central core system will be discussed later in this
chapter and in Chapter 4 (about the superconduc-
tivity). It will become evident, that this system ex-
hibits two different proper frequencies depending
of the external conditions and the strength of thein-
voked oscillations.

(1). case: for small amplitude oscillations: 3v,
(2) case: for large amplitude oscillations and
free positron: 2.25v,

Let analyse now thefirst case. In result of the
simultaneous oscillations of both systems, the
moving electron obtains a ‘hummer drill” effect,
which facilitatesthe the displacement (and smulta-
neous folding and unfolding) of the the CL nodes.
Inthis case, the oscillating internal positron withits
core oscillating at third harmonic, providesa“ham-
mering” effect, whose momentum is tangential to
the helical trgectory. This effect, from one side,
provides alternative component of the electron ro-
tational motion, and from the other, contributes to
the average velocity stabilization. The motion
property of the electron due to the “hummer drill”
effect are discussed in the next paragraph.

For a motion with a velocity lower than the
optimal one, the direction of the oscillation is still
tangential to the trgjectory and the “hummer drill”
effect is still working. For velocity above the opti-
mal one, however, the momentum of oscillation is
not tangential to thetrgjectory (seeFig. 3.4) and the
effect issignificantly reduced. The “hummer drill”
effect is stronger at the optimal confined motion,
less stronger in the range of lower velocities and
negligible for higher velocities. In all cases howev-
er, it contributes to the screw type of motion of the
electron, together with its electrical field.

3.5.2 Motion properties of the oscillating elec-
tron. Quantum motion.

We may denote the oscillation system asa e
/et system. From Fig. 3.9.a we see, that the
positron shell with its RL(T) oscillatesin the nega-
tive proximity field of the electron, whose radial
dependence is shown in Fig. 3.9.b.

The SPM EQ phases are synchronised along
the E-field lines, while their long axis orientation
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depends of the radius. From the configuration
showninFig. 3.5 and 3.6 we see, that the cosine be-
tween the tangential vector of the electron shell and
EQ long axis approaches 90 deg. The sameisvalid
for the positron motion inside of the electron. The
EQ SPM momentum in thisdirection isreduced. In
such case the electron moves and oscillates with
less resistance. The hummer drill effect of the cen-
tral core also contributes to the motion. Such mo-
tion conditions are valid, only when the radia
boundary circumference is equal to whole number
of Compton wavelengths. Only in such condition
onefull rotation of the external electron shell in CL
space, contains whole number of its subsystem os-
cillations. It is obvious, that such motion condition
arevalid for preferred selected velocities. We may
call this type of electron motion a quantum mo-
tion.

Consequently, in conditions of quantum
motion, we may refer the motion of the electron
positron system with its proper frequency di-
rectly tothe SPM frequency of the CL space.

Both: the proper frequency of the €/e" sys-
tem and the SPM frequency of the boundary, have
one and same value equal to the Compton frequen-
cy.

Let to analyse the NRM and SPM of the CL
stationary node during one cycle of SPM. The du-
ration of the cycle is equal to the Compton time
(period). During this time the direction of NRM
and SPM vector changes in 3D space. Figure 3.10
illustrates the timing diagram of both vectorsin 2D
drawing, where a. - shows the spatial direction of
the CL node NRM vector as sinusoids at step of
n/4, b. shows the positions of the CL node SPM
vector.
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Fig. 3.10
NRM and SPM vector during one Compton period
The NRM(CP), shown in Fig. 3.10.a has one
and asame momentum for the opposite direction of
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180 deg. The NRM(TP), however has a different
momentum due to the twisted parts of the prisms.
For this reason the NRM(CP) appears, to have
twice shorter cycle, than NRM(TP). The SPM vec-
tor, however, is determined by the NRM(TP). In
such aspect wemay consider, that the NRM (CP)
serves as a stroboscopic carrier of NRM(TP),
providing in this way stronger quantum fea-
tures of the CL space. Having in mind the fixed
positions of the CL nodes, and SPM MQ syn-
chronization, it becomes evident that the quan-
tum features are simultaneously temporal and
gpatial.

The temporal quantum features of the
NRM(T) of astationary CL node are illustrated in
Fig. 3.11, where: a. - showsthe SPM vector phases,
b. - the CL node resonance momentum, c. - the
time phase of SPM vector in one spatial direction
(denoted as positive), d. - the time phase of the
SPM vector in aopposite spatial direction (denoted
as negative)
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SMP phase in  CLnode

direction (+)

SMP phase in
direction (-

Abzolute frame at rest

CL node oscilations and SMP vector

Fig. 3.11
Tempora quantum features of CL node vectors

Let the electron motion is invoked by exter-
nal E-filed with arelatively small gradient, so the
e'/e" oscillation amplitude is small. Then the main
disturbance of the CL space, due to the electron
motion is from the electron E-field, while the dis-
turbance effect of the e/e* oscillations on the CL
gpace could be neglected). In order to analyse this
motion we have to take into account the frame of
the reference. For this reason we will use the con-
cept of the virtual observer.
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Let imagine that a virtual observer, sitting in
the front edge of the electron (external shell), ob-
serves the motion of the positron edge using itsvir-
tual fundamental clock. So its time base is the
Compton time. Let accepting that the peripheral
velocity of the electron isequal to alinear light ve-
locity, and the PP (phase propagated) SMP vector
is synchronized to appear in the same direction. If
the SMP frequency is equal to the electron proper
frequency, the virtual observer will see both vec-
tors vibrating in phase. But this means that the
SMP phase is propagated together with the virtual
observer with velocity, which is strictly dependent
on the node SMP frequency and node spacing. In
this conditions, the virtual observer will move with
velocity equal to alinear light velocity. The task of
the virtual observer is to register the timing dia
gram of electron in absolute units. Knowing a pri-
ory that he moves with a light velocity he may
prefer to reference the local velocities to the light
velocity. Then the timing diagrams of the electron
system oscillation from his point of view will look
like thisshown in Fig. 3.12.
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Fig. 3.12
Timing diagrams of electron system motion with simul-
taneous oscillations at first proper (Compton) frequency
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The amplitudes of motion, velocity and oscil -
lating charge are exaggerated in the drawings. In
fact they areintrinsically small.

The electron is shown in a. as a cylindrical
oscillating body for ssimplicity. It is assumed that
the electron shell moves with light velocity and the
velocity of the front and back positron ends are
shown respectively in c. and d. The sharp velocity
spikes corresponds to a maximal interaction with
the CL space. They areresponsible for the synchro-
nization of the electron oscillation with the SMP
vectors of the nodes. The periodica appearance of
the positive charge from both sides of electron in-
teracts with the lattice space and is responsible for
the phase locking conditions. As athe result of the
positive charge oscillations the external shell prac-
tically will not have exactly light velocity but will
possess a small AC (alternative) component
around the DC component of the light velocity.
The value of this AC component is automatically
self regulated due to the oscillation interactions be-
tween the electron and the CL space.

Equivalently we may consider that the
electron always oscillates with its frequency v,,
but meets the SMP vectors of the surrounding
nodeswith a correct phase.

We may accept, that small oscillations of the
whole electron system around the linear light ve-
locity are possible, because the helical light veloc-
ity is k,, times larger. The interaction at this
conditions with the CL space, however, is signifi-
cant. As aresult of this, the quantum effect is sig-
nificant. The positron - central core oscillations
also contributes to the “hummer drill” effect. Hav-
ing in mind, that the proper frequency of the
positron-core (for small amplitudes) is three times
the e/e* proper frequency (Compton), the alterna-
tive electron motion will get a third harmonic in
phase.

From the condition of phase synchronization
between the e/e" proper frequency and the CL
node SPM frequency (both equal to the Compton
one), it follows, that for onefull turn of the electron
the following relations are valid:

hspmmo = 27Ry,; @nd A, = 2nR .

These are the samerelations, assumed in §3.4
from the analogy with the first harmonic quantum
wave.
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The second relation shows that the Compton
wavelength can be considered as a path that any
point lying on the external helical shell passes for
one Compton period, when the tangential velocity
of therotating electronisequal to thelight velocity.
This relation is used in 83.6 for determination the
electron dimensions.

3.6 Dimensions of the electron.

The intrinsic mass of the electron is much
smaller than the proton. Then we can assume that
the electron does not shrink the lattice space (this
will become evident later). Let consider a confine
motion of an electron with optimal velocity. In this
case the periphera part will move with a speed of
light. We may consider however that the light ve-
locity corresponds to the radius R instead of
f(R+rg). Thisisacceptable (and will be evident |at-
er) because, from one side, theratio rJ/R is small
(0.0229), and from the other, the CL disturbance
effect from the higher velocity at (R+rg) will be bi-
ased by the lower velocity a (R-rg). Then taking
into account the screw like motion, the following
relationisvalid:

peripheral velocity: ¢ - path: /4n2R2 + (s,)

axial velocity: v - path: s
Then the axial velocity is:
v = L (36)

[4m2R2 + 2

Equation (3.6) givesthe axial electron veloc-
ity for its optimal confined motion. Thisvelocity is
very specific and practically it appears in many
cases related with electron motion. (for example
the electron motion in the lowest stable orbitsin at-
oms). Then our guess (which will be confirmed | at-
er) is: thisisthe velocity of the a, orbit in the Bohr
atom model, corresponding to energy of 13.6 eV.

= q02
2he

v = oc (3.7)
where: g, - isthe electron charge,
h - isthe Plank’s constant
e, - 1S the permittivity of vacuum
o - isthefine structure constant
We will prefer to express the velocity by the
fine structure constant o, whose physical meaning

will be revealed right away.
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(3.8)

o =

olc

Thefine structure constant istheratio be-
tween the axial and tangential velocity of the
electron at itsoptimal confine motion. (The tan-
gential velocity at the optimal confine motion is
equal tothelinear light velocity).

We see that the fine structure constant, from
onesideis very basic parameter, and from the oth-
er, it helps to determine the electron dimensions.
We see, aso, that it isadimensionless ratio of one
and same parameter - velocity. Consequently, the
fine structure constant will be not affected of even-
tual lattice space shrinkage (filed curvature).

Combining egs. (3.6), (3.7) and (3.8) we get
the step to radius ratio of the electron.

s

(3.9)

R _ —oc _
Sl =l 21.809

From Eq. (3.9) we seg, that the fine structure
constant is completely determined by the radius R
and the helical step s.. It isconvenient to express o
directly by theratio R/s.

-1/2
o = i(&z =+ _1_)
2m\s2 42

(3.10)

In order to derive another equation about the
electron, we will analyse its trgjectory at optimal
confined motion.

Having in mind the E-filed integrity we may
express the path of one point of the central core, for
example the frond edge, per one cycle time of the
electron proper frequency:

path = 2rR = ct, = et
VC

(3.12)

Solving the system of (3.9) and (3.11), we get
the values for R and s..

R = 3.86159 E-13 (m)
s=1.77061 E-14 (m).

It isnot a surprise, that the obtained value of
Risexactly equal to the Compton radius, however,
we obtained the value of the helical step, that is
very important initial result. Returning to Fig. 3.1
and Fig. 3.2 we see that the helical step could not
be lessthan 2r,, because the positron then could not
be able to come partly out in order to make oscilla-
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tion. It also could not be much larger and this will
become evident in Chapter 6 (because then the neg-
ative muon will be not able to crash and decay to a
positron if his step istoo large. In most of the ex-
periments performed by positive muonsit is found
that they could oscillate longitudinally until they
decay to apositron). The helical step similarity be-
tween the muon and e ectron (positron) according
to BSM is obvious. The electron (positron) could
be regarded as a single coil structure of that of
muon. From these considerations and from the sta-
ble appearance of the fine structure constant in the
el ectron spectrometry, we may accept, that the edg-
es of the external electron shell are just touching.
This means that:

Se=2r, (3.12)

According to the discussion givenin 83.11.2,
therelation between s,and roismoreaccurately
given by the gyromagnetic factor. Thisis a di-
mensionless physical factor, theoretically calculat-
ed and experimentally determined with very high
accuracy (see Eq. (3.23.c). Then the small electron
radiusre is directly obtained from the relation:

Se = Gele = 2.002310r, (3.12.8)

The ratio between the electron and positron
small radii is determined by the accepted ratio be-
tween theleft and right handed prisms: 2/3. Thisra-
tio is further confirmed by quantum motion of the
electron (discussed later in this Chapter), the frac-
tional quantum Hall effect (discussed in Chapter 4,
Superconductivity), and by the BSM interpretation
of the « decay. According to thisratio we have:

rpffe=2/3. (3.13)
Then the dimensions of the electron are the
following:

R =3.86159 E-13 (m)
re = 8.8428 E-15 (m)
rp = 5.8952 E-15 (m)
s=1.77061 E-14 (m)
R/r, = 43.669

R/rp =65.5

The shown above dimensions define also the
positron.

Thethicknessof the helical shell isvery small
in comparison to there andrp,. Thisis evident from
the calculations in 82.14, where the CL node dis-
tance aong abcd axes is found to be
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d,,~0.872x10>" [m]. Having in mind that this dis-
tanceislarger than the sum of the right handed and
left handed prism lengths, the prisms diameter then
is at least one order below this value. The helical
corethicknessisonly three prism diameters, soitis
negligible in comparison to r,. Then, practically,
for many calculations, we may consider, that the
internal RL(T) of the positron has external radius
of rp, and the internal RL(T) of electronisfromr,
to r.. Realistically some radial gap should exist be-
tween the electron internal RL(T) and the positron
structure. This could be explained, if having in
mind that the radial thickness of the electron’ s neg-
ative RL(T) islessthan half of theradiusr,, so this
shell it is not completed like the RL shells of the
positron. Then its average radial node density is
larger than this of the positron, and in the process
of RL twisting, itsinternal radius may not shrink so
much.

The RL(T) of the positron aso has some fi-
nite internal radius. Thisisits trapping hole radius
in which the central core oscillates.

The internal holes of both RL(T) of the elec-
trons are not affected, if the internal structure is
lost. The probability of the positron to lose the cen-
tral core is much lower. However, it may regener-
ate the lost negative core by the trapping
mechanism.

Thelargeratio Rire and R/r, favours the con-
fine motion of the electron and positron in the lat-
tice space.

From Eq. (3.10) and the above made calcula-
tions, we found that the fine structure constant o is
completely determined by theratio of R/s.. But this
ratio together with radius re according to the anal-
ysisin Chapter 2 are determined by the balances of
forces between theinternal RL(T), the bending hel-
ical core and the CL space forces (E -filed).

Consequently, we may conclude, that:

* Thefinestructure constant providesindi-
rect estimation of the CL space parameters
by the geometrical parameters of the elec-
tron

» Thedimensions of the electron, are dependa-
ble of the CL space parameters.

The second conclusion shows one very im-
portant feature of the electron. From one side, it
may help to explain some effects in the General
Relativity, and from the other - some cosmological
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effects, related with the observed galactic red
shifts.

The above obtained dimensions appear very
useful for solving the following tasks:

- estimation of CL space parameters. static
and dynamic pressure

- derivation of theoretical equation for esti-
mation of Newtonian mass (mass equation)

- derivation of theoretical equation for a
background temperature of CL space

- calculation of the proton dimensions, in-
cluding its substructures

In solving the above tasks, we will usethe ge-
ometrical parameters of the electron. They could
serve as a basic reference units.

Itisuseful to know, that any one of the geometrical
parameters of electron hasdirect expression by the
fundamental physical constants. These expressions
are given below.

_ _C
Re = 2nv, Comptonradius (3.13.a)
g, = —2& helical step (3.13.b)
vCAjl—oc2
Mo = So/0e small radius (3.13.0)
fp = 3t positron small radius

3.7 Interaction between the moving electron
and the external electrical field

When the electron isforced to move by exter-
nal electrical field it exhibits a confined motion. If
the accelerating field possesses an axial symmetry
and the electron has some initial velocity it will be
accelerated by the filed, but will preserve its
straight trajectory. In the interaction process, the
external filed interacts directly with the electron.
The interaction forces of the accelerating field,
may be considered applied to the circumference at
radius equal to its equivalent electrical radius Rey.
For a symmetrical field, the forces acts as a sym-
metrical “pull-up” forces and do not cause change
of the straight line trajectory of the electron.

The interaction process between moving
electron and external magnetic field is adifferent.
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3.8 Interaction between a moving electron and
an external magnetic field

The process of interaction between a moving
electron and external magnetic field isexplained by
the help of Fig. 3.13. Inthisfigure the central plane
of the radial section of the electron field is shown.
The external magnetic field is presented by parallel
lines with arrow pointing the filed direction. The
interaction take place only in the circumference
with radius Ryy,. The magnetic field lines can in-
clude only magnetic quasispheres (not disturbed
CL nodes), whose phases are synchronized. In the
radial section of the electron field, the circumfer-
ence at radius Ry, only, include magnetic quasi-
spheres. According to the field integrity condition,
they should be energetically connected to the adja-
cent EQ of the electron field. Due to the electron
rotation in its screw like motion, the effective forc-
es from both sides of the axis OO’ are different.

Fig. 3.13
Interaction forces between external magnetic
field and the field of the moving electron

(In the drawing only two resultant forces are
shown, for simplicity) Theright side of the electron
single coil structure will get acceleration from the
magnetic field, while the left side - deceleration.
Thiswill cause the electron to get angular momen-
tum around the axis OO'. The electron containing
kinetic energy will make a cyclotron curve in a
counter clockwise direction. For stronger magnetic
field, thefiled lines are denser and the cyclotron ra-
diuswill besmaller. If the direction of the magnetic
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field is changed the cyclotron rotation will bein a
clockwise direction. The classical equation for the
cyclotron radiusis:

mgv
o (3.14)
where: m, isthe electron mass, visthe veloc-
ity, g is the electron charge and B is the magnetic
field.
Accelerated electron makes a circle with an
angular frequency » named acyclotron frequency.

w =

=lIc

B
= %1:; (3.15)

In 83.4 and Fig. 3.8, it was shown, that the
boundary conditionsfor electron with optimal con-
fined velocity has a shape of oblate spheroid, and
the density of the terminated E-filed linesislarger
at itsequator. The simplified presentation of thein-
teraction mechanism, presented above is equally
valid also for this case.

Fig. 3.14 shows the electron motion in quad-
rupole magnetic field. If the electron moves exactly
in the centre of the field along the axis normal to
the drawing plane, the field will exercise symmet-
rical forces on the magnetic boundary radius and it
will not get deviation. If the electron is dightly of
the central axis, it will get a helical trajectory
around this axis. The shown type of magnetic filed
isused in the synchrotron accelerators.

Fig. 3.14
Quadrupole magnetic field
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3.9 Quantum motion at optimal and subopti-
mal velocities. Quantum velocities.

3.9.1 Quantum stabilised velocities and their
corresponding energy levels

From the axial boundary section of the elec-
tron E-field at the optimal confined motion, shown
in Fig. 3.8, we see, that the E-field isrestricted in a
near spherical volume. The exact boundary condi-
tions, i. e. the isolated magnetic quasispheres are
valid only for a part of the total E-field volume.
This volume could be approximated with a cylin-
drical volume with a base approximately equal to
the central section of the spherical volume with ra-
dius Ry, and small thickness. For the optimal con-
fined motion, corresponding to energy 13.6 €V, the
boundary condition is 2zR , = Agpy mg- 1hE Next
possible boundary conditions, isfulfilled, when the
boundary radius of the external surface is equal to
2hepmmo- 1N this case the electron rotates with
twice lower frequency. The electrical field param-
eters of the moving electron in both cases are
shown in Fig. 3.15.

Fmh I
. |
52, (R \
quasi- | $o4==@emicsiog opofodod |
spheres | | a
e-d |
E,(lh) ':. :
o .
1 e o F
L b.
g
Ry J
R
SPM R i i e i e i .
quasi-| pok—mlmbpiogagopagopogopopogopodopopopopod
=35) 4 T=2 =Y
EJ— :
E(2h) /R;L |
. ¥
o e |
Fig. 3.15

Radial E-field and boundary conditions of the electron
for motion with two consecutive boundary conditions

Similar type of motion is possible if the cir-
cumference length is equal to n times Ay o - IN
these conditions, the rotational frequency of the
electron isrespectively v /n.. Then appearsto be a
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subharmonic number in a similar way as in the
quantum wave (photon).

Having in mind, that the electrical charge is
one and a same, from Fig. 3.15 we see, that for the
n subharmonic, the radial energy becomes distrib-
uted in n? larger area, than in the first harmonic.
Thisisnot valid only for the proximity field, asin-
dicated in the drawing. Consequently, the energy
density outside of the proximity field is inverse
proportional to the subharmonic number. In the
same time the constant energy in the proximity
field keepsthe normal self energy of the electron at
constant value. The latter condition assures astable
proper resonance frequency of the electron oscill at-
ing systems.

As aresult of described above features, the
moving electron exhibits a quantum motion at
preferable velocities. This velocities corresponds
to adefined kinetic energies.

Let determine what are the resistive forces,
which oppose the optimal confined motion at the
quantum subharmonics. They are two:

- The CL resistance due to the rotation of the
electron E-field;

- The CL resistance due to displaced CL
nodes by the electron volume

The resistance from the rotated E-field is
smaller exactly at motion with subharmonics, be-
cause part of theradial circumference of the E-field
isisolated. Theisolation effect is only a partial, so
the electronis still ableto interact with some exter-
nal electrical field.

The second resistive force, mentioned above,
is from the displaced and folded CL nodes. (They
do not pass through the RL(T) structures of the
electron). Larger tangential velocity causesalarger
number of folding and restoring nodes. This means
alarger work.

The tangential velocity of the electron exter-
nal shell at different subharmonic numbersis:

2nR, _ 21R.v,

_C _ C
v(n) = = = —% =
() n ten n

(3.16)

where: n - is the subharmonic number

Knowing that the fine structure constant
gives the relation between the tangential and axial
velocity, we can work directly with the axial veloc-
ity, which in fact is the classical velocity of the
moving electron.
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v(n) = O‘FC (3.16.9)
Then the energy levels (in electron volts) for

the quantum motion are given by Eq. (3.17)

2
hv. o

2
n

22
1M € 1

2n2q

-1 1_ -1 1
Ee/(N) = M [0(m]7; = =52 (17

where: mg isthe electron mass, g - isthe elec-
tron charge

One useful expression, derived from (3.17) is
the equation of the axial velocity. Its average value

should not exceed the linear light velocity.

hv
v =
e

We may denote the preferred energy levelsas
SPM subharmonic energy levels, and the corre-
sponding velocities - SPM subharmonic veloci-
ties or quantum velocities of the electron,
knowing that they are referenced to the SPM fre-
guency of the magnetic quasisphere. In other words
they are the preferable quantum levels of interac-
tions. Table 3.1 shows the energetic and boundary
parameters of the first six quantum levels, where:
I IS the circumference length of the radial sec-
tion, v isthe axial velocity of the electron, E isthe
energy level in (eV).

(3.17.9)

Table3.1

n  Boundary I v [m/sec] E[eV]
radius

1 Rmw Aspm MQ 2.187E6 13.6
2 2Ry 2Mspm Mo 1.094E6 3.401
3 3Ry Aspm Mo 7.292E5 15117
4 4R 4hspm Mo 5.469E5 0.8054
5  5Ryp Skspm Mo 4.375E5 0.544
6 6Ryp Aspm Mo 3.646E5 0.3779

The energy levels of the Bohr atom are given
by Eg. (3.18).

B —2neoq2 1
B0 =3 (n_2)

0

(3.18)

where: a, is the Bohr radius

Thederived Eq. (3.17) gives exactly the same
energy levels as the Eq. (3.18). While the Eq.
(3.17) is based on the atomic model, suggested by
Bohr, the proposed by BSM equation (3.18) ex-
presses directly the electron quantum behaviour in
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the CL space. Consequently, the quantum behav-
iour isintrinsic feature of the electron. Then it can
appear in the combine motion between the electron
and proton. In the Hydrogen atom, every possible
subharmonic number of the electron quantum mo-
tion define the bottom level of the series. They are
the following:

Table3.1

Subharmonic number Lowestlevel in[ev]  Seriesname

1 13.6 Lymen

2 34 Balmer

3 151 Pashen

4 0.85 Bracket

5 0.544 Pfund

6 0.3779 Sixth

These levels, when considered as a quantum
numbers are more stabl e than any other transitional
levels, because of the complimentary interactions
between the oscillating electron and the oscillating
CL nodes. (The SPM frequency of the CL nodes
are synchronized by the Zero Point Waves, which
always existsin anormal CL space).

Similar motion conditions exist not only for
the electronsin the Hydrogen atom but for any oth-
er atom. In the second case, however, the energy
levels are modified due to the common positions of
the protons in the nucleus and the stronger nuclear
IG field.

3.9.2 First harmonic motion and Rydber g con-
stant

The Rydberg constant (known also as Ryd-
berg) isinvolved in the well known Rydberg-Ritz
formula. It isameasurable parameter by the atomic
spectroscopy. It may be expressed in wavenum-
bers, electron volts, or wavelength. The constant
value has avery slow change from element to ele-
ment. For the very heavy atoms, the Rydberg in
wavenumbersis given by the equation:

2
R = Mecd

- 2h

= 100737315x10" [mY]  (3.19)

For the Hydrogen atom it islittle bit smaller.

4
em

m
R, = (—P—)—Oln = 1.00677587x10°  (3.19.8)
me + Mg 8cegh
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where: theterm in the bracket isknown asre-
duced electron mass

The Rydberg constant, according to BSM, is
defined directly by the condition of the first har-
monic quantum motion of the electron.

For afirst harmonic motion, the electron en-
ergy in Sl unitsis:

E = hv, = hco (3.20)

where: ¢ = 1/3, isthe wavenumber

The quantum energy level according to Eq.
(3.17) for n = 1 in Sl unitsis given by Eq. (3.21),
whilein (eV) - by Eg. (3.21.9)

B 1hvcoc2

S (3.21)

1
= é(hvca2) [J]

E(eV) = %(hvcocz)/q =136057  [eV]

Equating (3.20) and (3.21), and solving for o,
we get the value of Rydberg in wavenumbers.

2
Vo

= 1.00737315x10" [mY]

(3.21.9)

o =

If making a substitution m_ = (hv,/c* in Eq.
(3.29) it convertsto Eq. (3.21.a). Consequently:

» The Rydberg constant corresponds to the
electron’s motion at first SPM harmonic (a
case of optimal confined motion).

The Rydberg constant, according to Eq.
(3.21.4) (containing only CL space parameters) ap-
pears to be a parameter of the CL space. The fine
structure constant isalso a CL space parameter, but
estimated by the electron parameters. In 83.11 it
will be shown, that the electron parameters in fact
are defined by the CL space parameters, because
they determine the shape and dimensions of the
electron. Thereisone very small contribution from
the bending resistance forces of the helical core,
that are not defined by the CL space parameters.
This small contribution, in fact, gives the general
relativistic deviation. Ignoring the latter one for
now, we can make a conclusion, that:

» TheRydbergconstant isa CL space parame-
ter

In the table of fundamental constants, the Ry-
dberg constant is given also in frequency units, and
in energy units. In the latter case, when estimated
in (eV) it correspondsto 13.6 eV - the energy of the
electron optimal confined motion.
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One question may arise: Why the accurate
value obtained by Eq. (3.21.a) matches exactly the
Rydberg for the massive element and not for the
Hydrogen? The explanation is the following:

The Rydberg constant can be regarded as an
energy parameter of the CL space. When a photon
is emitted as a result of CL pumping, an exact
equivalence exists between the pumped and the
photon energy.

CL pumped energy = photon energy

For this reason the signature of the Rydberg
constant appears in the atomic spectra. Thisgivesa
possibility for its experimental estimation. The
pumping conditions in atoms are obtained by the
circling of the electron around the much heavier
nucleus. They both are not fixed in the CL space,
but only by their masses. So for the pumping ef-
fect of the stationary CL space (in our case the
Earth local field) we haveto consider their com-
mon motion. For the much heavier nucleus, the
comparative electron mass become intrinsically
small. Then the heavier nuclei could be consid-
ered asafixed in CL space. From the other hand,
the Hydrogen nuclel is lighter, and could be not
considered as fixed in the space. We seg, that Ryd-
berg constant approaches the maximum value at
heaviest atom and is smaller for the Hydrogen. For
this reason the reduced electron massis used in the
Eg. (3.19.9) (the bracket term). While the Rydberg
isproportional to the photon energy it appears, that,
the CL pumping efficiency is highest, when the
electron circle around a stationary fixed nucle-
us.

The above made conclusion is confirmed,
aso by the Positronium transition 13s,-23s,, dis-
cussed in 83.17.4.

Let usfind the physical meaning of the elec-
tron reduced mass. The bracket term of the electron
reduced mass, can be presented in aform:

m.m

P\ _
(me+mp) NMe

(3.21.b)

where:
n == ”1m isthe CL pumping efficiency (3.21.C)

m

m - is the mass of the heavier nucleus
around which the electron is circling orbiting
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Then the expression of the Rydberg constant
takes amore general form, in which the CL pump-
ing efficiency is explicitly involved.

~ v 02
Ry=m 2c

Equation (3.21.d) shows, that the Rydberg
constant apart of the lattice parameters, depends
only of the pumping efficiency, determined by the
involved masses.

The pumping efficiency for the Hydrogen
atom is 0.9994557, while for the Positronium it is
0.5.

We may summarize that:

» Theéelectron exhibits a quantum motion due
to the interaction between SPM MQ fre-
guency and the proper frequency of the elec-
tron-positron system

* Thequantum levels of the electron velocity
are defined by kinetic energies at which the
electron exhibits screw type of motion with a
lessresistance

» Therotational frequenciesfor the quantum
levels are subharmonics of SPM MQ fre-
guency, including, also, thefirst harmonic.

* Thequantum levels of the electron velocity
definethe bottom levels of the Hydrogen
seriesand arerelevant also for other atoms.

» TheRydberg constant isdirectly defined by
thefirst harmonic quantum motion (optimal
confined motion)

* TheCL pumping effect obtainsa maximum
value, when theelectron isorbiting in afixed
frame.

(3.21.d)

3.9.3 Quantum properties of the positron sys-
tem

We saw that the oscillations with small am-
plitudes are relevant for the quantum motion of the
electron at suboptimal velocities. The same ampli-
tude conditions should be relevant for the positron
guantum motion. The confine motion of the
positron has some similarities and some differenc-
€sin comparison to electron.

The similarities are the following:

- same boundary conditions

- asimilar screw type of motion

The differences are the following:
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- The external motion environment of the os-
cillating coreis different

- The proper frequency is different

In afirst gland, the efficiency of the positron
quantum motion could look much lower, in com-
parison to the electron, because the the system has
only oneinternal RL(T), and the intrinsic matter of
the central ore is much smaller. This, however, is
partly compensated by the increased hummer drill
effect, aswe will see from the following analysis.

When the positron system oscillates inside
the electron with small amplitudes, the central core
oscillates in slightly negative external field, aswas
shown in Fig. 3.9.b.

The oscillating conditions of the central core
of the free positron, however, are different. Now,
the external negative field is missing, and the gra-
dient of the positive E-field fallsto zero. For small
amplitude oscillations of the free positron, we may
accept, that the central core oscillates in environ-
ment of MQ nodes. But the SPM frequency of the
external and internal MQ’s is one and same. Then
the oscillating central core will exhibit stronger
hummer drill effect. This will partly compensate
the efficiency of the free positron quantum interac-
tion in comparison to the electron. The optimal in-
teraction will be obtained at such positron rotation,
at which the phase difference between the PP SPM
vector and the proper frequency of the free positron
iIszero. To obtain thismotion conditionswe need to
know the free positron proper frequency. Experi-
ments with positrons provide confidence about its
inertial mass, but thisis not enough in order to ob-
tain the proper frequency. The Plank’s constant
may have different value, when estimated by the
positron parameters (and this will become evident
by the course of BSM.) So in first we will make
sometheoretical analysis, and then we will look for
experimental confirmation.

Let make comparison between the electron
system and the free positron in order to find the
conditions, when their central coresexhibit one and
same resistive momentum. Let analyse in first, the
motion of both systems when they have one and a
same tangential velocity of their external shells.
We may use the classical equation for the proper
frequency of oscillation system:

f:ik
2nAm

(3.21.0)
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The inertial mass of the central core should
contribute to m - parameter, while the repulsive
forces between the negative core and external field
to the spring constant k - parameter.

a) Inertial considerations of positron- core
system

In the case of electron, the positron shell,
moves in a CL domain with SPM momentum,
which according to Eq( 3.5) (see aso Fig. 3.5) is
given by: kppi(Rpp))

In this case the central coreis carried by the
positron shell, and for small oscillationsit does not
feel the above SPM momentum. In case of free
positron, however, the core will exhibit momentum
p(Ropy) - Thenitsinertial interaction appears lower,
and it will behave as alower inertial mass, that ac-
cording to Eq. (3.21.c) will means a higher proper
frequency.

b) k - parameter considerations

Here we have to consider two electrical com-
ponents: external component and internal one - re-
lated to the trapping hole effect.

In a case of internal positron, the negative
core exhibits a slight repulsive force from the ex-
ternal negative field of the electron (see Fig. 3.9).
In a case of free positron, the external field is posi-
tive. The E-field interaction of the central corewith
that field is not so strong, because the core does not
posses RL(T). However it may obtain slight exter-
nal attraction due to the positive external field. The
internal trapping force, however isnot affected and
predominates the external one. The IG(CP) forces
are also unchanged. It is obvious, that the k param-
eter in case of internal positron will be larger, than
for the free positron.

We seg, that the factors m and k, both change
in a same direction so: the proper frequency of the
free positron is expected to belower, in comparison
to the internal one. In fact we could not expect
much change of the m factor, between both cases,
because, the IG(CP) is focused onto the central
core and is much stronger.

In order to find out what is the possible oscil-
lating frequency of the free positron we will ana-
lyse the oscillations of the positronium, known as
Ps 135, - 23S,. It leads to emission of a photon at
wavelength of 243 nm. This positronium isaresult
of common oscillation motion between a normal
electron and a free positron. The energy of the
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emitted photon is 5.1 eV. The only possible quan-
tum energy level transition for thisvalueis (13.6
eV - 3.4¢eV)/2=5.1¢eV. Itisnot difficult to guess,
that the electron participate in the oscillations with
its optimal quantum velocity, corresponding to en-
ergy level of 13.6 eV. Then the positron energy is
3.4 eV. Obvioudy thisisavelocity with a stronger
larger quantum effect. The oscillation process,
leading to a photon emission is analysed in more
details in 83.17.3. The level difference is divided
by two, because, the two masses are similar. This
reduces the efficiency of the lattice pumping by a
factor of two in comparison with the Hydrogen se-
ries, where the massratio of proton/electron isvery
large and the proton could be considered as a sta-
tionary body.

Other emissions from the above mentioned
combination are not observed. It is reasonable to
not expect another quantum energy levels, because
the interaction properties of the central core in
comparison with those of the positron shell are
very week. The boundary conditions for the quan-
tum motion of the electron and free positron are
one and a same. Then the energy level of 3.4 eV
should correspond to the optimal confined motion
of thefree positron, which meansthat its oscillation
frequency is twice larger than the first proper fre-
quency of the normal electron, or twice the Comp-
ton frequency.

Vpe = 2V, (3.22.8)

where: v, - isthe proper frequency of
the free positron system

Therelation (3.22.a) is confirmed also by the
fractional quantum Hall experiments, discussed in
Chapter 4.

Consequently, the free positron exhibits a
quantum motion at 3.4 eV, duetotheinteraction
between the CL node SPM and the proper fre-
guency of the system.

The maximum confined velocity of the
positron appears to be one half of the optimal con-
fined velocity of the electron. The positron may not
have another quantum velocity and energy level in
CL space with norma ZPE, due to the decreased
quantum effect in comparison to the electron.
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3.10 Electron acceleration

For velocities higher than the optimal one, the
electrons can be accelerated by two methods. by
electrical field or by magnetic wave. There are two
distinguished features between both types of accel-
eration.

In case of electrical field acceleration, (con-
sidering asymmetrical field), the externa field pull
the electron by its surrounding E-field. The accel-
erating force may be considered as applied at the
electron equivalent radius. In this case the stretched
helical trgjectory have the same handedness as the
second order handedness of the electron.

In case of wave type acceleration by magnet-
icfield, the accelerated field interacts only with the
electrons E-field lines terminated withaMQ’s. For
velocities much higher than the optimal one, these
MQ'sare arranged in very stretched helical trajec-
tories, which tends to delay from the AC phase of
themagnetic field. Thealternative magneticfieldis
synchronized with the electron momentum veloci-
ty in order to not miss the phase of the electron
proper frequency. At large velocity however, the
guantum effect of the electron oscillation is small.
Then the proper frequency could not be kept syn-
chronized to the SMP MQ frequency of the accel-
erating field. As a result a squeezing effect may
appear constantly between them. This effect, may
reduce the reaction of the accelerated electron that
will appear as an opposite magnetic field (asin the
selfindunction). Dueto reduced reaction, the accel-
eration effect appears more effective. In very high
velocity may appear also, that the electron could
rotatein areversed direction. (Inthiscasethe effect
issimilar as mechanical acceleration of screw with
larger step to diameter ratio by sliding nut).

From the provided ssimplified analysis it ap-
pears that a high energy (velocity) acceleration of
an electron beam is more effective when provided
by alternative magnetic field. Thistype of acceler-
ation is used in the synchrotron accelerators.

3.11 Magnetic moment and gyromagnetic fac-
tor of the moving electron

3.11.1. Magnetic moment

The confine motion of the electron means,
that it rotates continuously. Consequently, its elec-
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trical field creates waves in the CL space. The
waves accompany the moving electron as closed
magnetic lines, formed of connected in loops mag-
netic protodomains. In uniform, not disturbed by
other particles CL space, the magnetic linesarecir-
cles around the electron trace. The direction of the
induced magnetic field is determined by the axial
direction of the “screwing” electron.

For electron moving with velocity near the
optimal one, the motion behaviour is strongly in-
fluenced by the oscillation properties of the elec-
tron. When bundle of electron is moving with such
vel ocity, the common synchronization effect isalso
very strong. This provides a strong modulation ef-
fect on the lattice space, appearing as an magnetic
field.

Let analyse the magnetic disturbance of the
CL space from a single electron, moving with the
optimal confine velocity, corresponding to energy
of 13.6 eV. For one full turn of the external shell,
the electron-positron system makes one cycle,
whose period is the Compton time. The induced
magnetic field in this conditionsis characterized by
the electron magnetic moment. It is given by the
equation:

he = o1+ ) [AM]

4mtm, 2n

(3.23)

where: q - isthe electron charge, h - isaPlank
constant, m, is the electron mass and o - isthefine
structure constant.

The electron magnetic moment is considered
anomalous, so far, because of the second term in
the brackets. But according to BSM model of the
electron, o is completely determined by the elec-
tron radius R and step s, (see Eq. 3.8). Consequent-
ly, this term shows the contribution of the helical
step of the electron, due to the screw type effect.
The electron motion at this velocity is affected
stronger and the effect is detectable. Therefore,
the magnetic moment of the electron suggested
by BSM should not be consider ed anomalous.

Let to explain, why the magnetic moment is
increased when o islarger. The dependence of o,
from the ratio R/s, was given by Eq. (3.8). For de-
fault value of o , thisratiois:

R/s, = 21.809 . Fig. 3.16 showsaplot of thefractional
change of o, for R/s, range from 21 to 23.
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Fig. 3.16
R/s, ratio as an estimation factor of the fine
structure constant

We see, that for small range of RJ/s,, the
change of o islinear but not perfectly. The physi-
cal explanation of the R/s, change and its direct ef-
fect on the magnetic moment is afollowing:

The electron parameters: R, re, S are de-
pendable on the forces balance, between the inter-
nal RL(T), externa CL space and the helical core
bending (see Eg. (2,8)). In this balance the strong
|G forces are involved including the electrical field
created by RL(T) lattice of the electron’s external
shell whose energy is included in the IG energy
balance. The balance causes adjustment of some of
the parameters of the helical structures. In this ad-
justment, the second order parameters asthe radius
R; and the step s, are stronger affected than thefirst
order ones (this was discussed in §2.8, Chapter 2).
Therefore, if the CL space parameters are changed
(for example the node distance), the twisting of the
internal rectangular lattice will be affected. This
twisting of RL controlsthe angle of the external E-
field lines, emerging outside of the helical shell.
Consequently, the magnetic moment is dependent
on the RL twisting and the second order step s,.

The magnetic moment is a measurable pa-
rameter.

3.11.2 Gyromagnetic factor

Firstly we must emphasize the differences
between two different parametersrelated to the gy-
romagnetic properties of the electron: a gyromag-
netic factor and a gyromagnetic ratio.

The gyromagnetic ratio is aratio of the mag-
netic moment to the spin. It is given by the equa-
tion:

Y, = 4mu /h=1.760859x 10" [s7T  (3.23.3)

Copyright © 2001, by S. Sarg

The parameter gyromagnetic factor, g,, isre-
lated to the gyromagnetic ratio, but it is dimension-
less. Itsrelation to the Bohr magnetic moments, .,
is given by the equation:

0 = %“f = 2'”"'4_2%9 (3.23.b)

ge = —2.0023193

where: p, = —928.476362x 10°° [JT] - the mag-
netic moment of the electron, h - is the Planck’s
constant and m, - is the mass of the electron.

In the conventional physics, the gyromagnet-
ic factor is theoretically evaluated and then experi-
mentally measured with tremendous accuracy.
Thismeansthat itisarea physical parameter of the
electron. It is dimensionless parameter as the fine
structure constant. According to the theoretical
treatment, the g factor is expressed by a series con-
taining only the fine structure constant as a physi-
cal parameter. So it is real QED parameter. From
the point of view of BSM, it is not difficult to
guess, that this parametersis defined from the ratio
between the helical step an the small electron radi-
us.

e = SJ/re = 2.0023193 (3.23.0

Consequently, the factor allows us to deter-
minethe small electron radius (asthe helical step s,
was determined in 83.6).

One may argue, that the relation (3.23.c) is
not exactly a same for the free positron, because
rp, = (213)r,, Whiletheir inertial masses are equal. In
case of positron, however, number of other factors
should be also considered: the different proper fre-
quency (defining different optimal confined veloc-
ity), thedifferent physical dimensions, thedifferent
intrinsic matter densities of theright and left prisms
and the different intrinsic time constants of the two
substances of intrinsic matter.

One additional reason that the simple equa-
tion (3.23.c) is directly valid for the electron,
comesfromthefact that the Planck’ sconstant ises-
timated by the electron parameters.

Summary:

« Themagnetic moment of the electron isa
parameter expressing its spatial and velocity
stabilizing properties. Its large magnetic
moment (in comparison to the proton’s one)
is aresult of itsopen helical structure, the
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equality between the corelength and gy,

and the quantum interaction it exhibitswith
the CL nodes.

* In absence of magnetic field, the large mag-
netic moment of the electron assuresits
straight forward motion despite the displace-
ment of the CL nodes. I n environments of
external magnetic field, the magnetic
moment causesthe electron to perform a
motion along a cyclotron curve.

» Thegyromagnetic factor isa parameter of
theelectron structure. It appearstobea
ratio between the helical step of the electron
and itsradius.

Copyright © 2001, by S. Sarg 3-26
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