BSM Chapter 3. Electron system (electron)

3.11 Quantum magnetic radius of the electron

The quantum features of the electron define
its preferential velocities (energies), referred also
as quantum velocities. Electron motions with such
velocitiesexist not only in the Hydrogen atoms, but
inal atoms. In Hydrogen they appear explicitly, as
the lowest level energy of the series. In other at-
oms, however, they does not appear explicitly, be-
cause their energy levels are added with the IG
potential of the atomic structure. These potentials
are included in the CL space pumping and photon
emission. The electron motion, with quantum ve-
locities however isinvolved in all emission and ab-
sorption spectral lines. For this reason we will pay
a specia attention about the quantum conditions
corresponding to suboptimal velocities (electron
energies below 13.6 eV).

Thereis one value of the electron radius, that
fits well the spectroscopic data, according to the
guantum mechanics. Thisisthe Quantum Mechan-
ica radius Ry, . It isrelated to the Compton radius
by the factor of ./3

Rowm = /3R, = 1732R; (3.24)

In the following analysis we will derive the
equivalent quantum radius of the electron. Thisis
the radius, corresponding to the equivalent radial
field, showninFig. 3.6. It isevident, that this radi-
us depends of the subharmonic number.

Let to derive, infirst, theequivalent radiusfor
thefirst harmonic, corresponding to energy of 13.6
ev.

A. Case: Quantum radius at first harmon-
ic (at optimal confined velocity v = oc):

In CL space with normal ZPE (not supercon-
ducting state) the quantum magnetic field @, is
given by therelation

@, = qﬁ = 4135x10° Wb (3.25)
The quantum magnetic strength H,, is:
Hy = Bo_®% _ h1 A (3.26)

where: B, is the quantum magnetic inductance,
u, isthe permeability of free space (cosmic
lattice),
S isthe surface areafor which the magnetic
flux flows.

Copyright © 2001, by S. Sarg

(Corrected: Jan 2004)

From thefield configuration of the electron at
optimal confined velocity discussed in 83.4 and il-
lustrated in Fig. 3.5 and 3.8, becomes evident, that
the only surface that may satisfy the definition is
the boundary surface. At accepted ratio
koo = Ryp/Re = 4, the shape of surface for the first
harmonic is dightly oblate spheroid. For the sec-
ond and next subharmonics, the shape approaches
a sphere. In afirst approximation we may accept,
that the surface has a spherical shape also for the
first harmonic motion. Then substituting
S = 4n(k,,R.)? 1N EQ. (3.26) we get.

(2.27)
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The Eq. (3.27) having dimensions of [A/m],
can be regarded as a quantum magnetic strength.

The magnetic moment of the electron was
given by Eq. (3.23). It has dimensions [Am?]. The
electrical field of the screwing electron generates
disturbance in the CL space as magnetic field. The
disturbance volume is obviously external to the
helical structure, having a similar shape but with
req> e~ DUETO the larger R/s, ratio, we can express
the volume of the electron structure as a torus vol-
ume with larger radius re. and smaller one re.
Veq = 2n2R(12,-13)  Then dividing the magnetic
moment on that volume, we will obtain expression
with the same dimensions [A/m].

(3.28)

He _ Goh 1 o
Ve 4“me2“2Rc(r§q-rg)(l+Zc) [A/m]
The Eg. (3.28) has a same dimensions as
(3.27), and expresses also the quantum magnetic
strength H,,.
Equating (3.27) and (3.28) and solving for
reqWe get the quantum equivalent radius for the
first harmonic.

1/2
- qzuoRckﬁb(l_'_ g)+ r2
ge 2n?m, 2n) ©

(3.29)

For k,, = 4, we have (r . = 1.057x10"%) m.
The equivalent quantum field is a torus with
a same radius R but r.,>r,. The real equivalent
guantum radius thenis:
Req = Re*Teq - (3.30)
B case. Quantum radii at subharmonic
numbers 1<n<3.
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In a subharmonic motion, the flux @, is the
same but B is changed because boundary surface s
is larger. The boundary radius at n subharmonic
IS:R (N = nR:ky,, . Then the boundary surfaceis:

S(n) = 4n(nR Ky

Substituting the expression of s(ny in (3.26)
and processing in a similar way as the previous
case, we get the equivalent radius in function of the
subharmonic number n.

1/2
Fae() = {%(1 + %t) + rg} (3.31)

The quantum radius is always smaller, than
the boundary radius. It could be considered as an
equivalent radius for idealised E-field with square
shape. For this reason it is convenient for calcula-
tions related with energy.

The values of the equivalent radius r,, the
boundary radius R,y,, and the relevant energy for
few subharmonics are shown in Table 3.3.

Table 3.3
N E[V]  rglml RuMIM (Retre/Re
1 13.6 1.057E-13 1.544E-12 1.273

2 3.401 2.1087E-13 3.089E-12 1.546

3 151 3.161E-13 4.634E-12 1.818
4 4.215E-13

In the derivation of Eq. (3.31) we have as-
sumed, that the equivalent radius is symmetrical
around the radius R;.  Then the condition r, <R,
must be satisfied. From Table 3.3 we seg, that this
condition is satisfied up to the third subharmonic.
The fourth subharmonic does not satisfies this con-
dition, so the Eq. (3.31) isvalid for thefor 1<n<3
only. For these cases, the equivalent quantum
radiusistill equal to (R, +r,) .

The last column of Table 3.3 shows the ratio
between calculated equivalent quantum radius and
the radius Rgy, used in the quantum mechanics.
The Eq. (3.24) givestheratio Rgy/R. = 1.732. We
see that this value is the second and third subhar-
monic. They correspond to the Balmer and Pashen
series in Hydrogen. In Chapter... we will see, that
the electron motion in the most available seriesin
all atomsissimilar asthe motion of the Balmer and
Pashen series. Then the cal culated equivalent quan-
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tum radius appears consistent with the spectral da-
ta
C case: Quantum radii at subharmonic
numbersn>3.
For subharmonics larger than 3, the equiva-
lent quantum field will not havethe sameradiusR,,
but larger, as shown in Fig. 3.17.

o

Fig. 3.17
Equivalent quantum radius of the electronfor
subharmonics numbers > 3.

In this case the volume V can be expressed
aS. Ve, = 2n2(r3, —R.r2) . Neglecting the helica fac-
tor o/2n, the derived radiusreg inthiscaseis:

o, n?R2K2 NEE
eq(N) = [Ofcmu Rcrel (3.32
The equival@htlguantum radius is:
Req = 2req fOrn>3 (3.33)

Table 3.4 shows the equivalent and boundary
radii for subharmonics numbers n>3.

Table3.4
n E[eV] Feq [M] Reg(M Ml Rinp(n) [m]
4 085 4092E-13  8.184E-13  6.178E-12
5 0544  AT748E-13  9496E-13  7.72E-12
6 0377  5361E-13 1072E-12  9.268E-12

We see that at smaller velocity the quantum
radius is larger. The velocity for the sixth subhar-
monic is 3.646E5 m/sec. (see Table 3.1). The elec-
tron motion around the proton is characterized with
large velocities. The motion of free electrons in
metals however is characterised with small veloci-
ties.

It isinteresting to derive the electron equiva-
lent quantum radius at small velocity, because, it
will help to unveil theinteraction effect with the at-
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oms. Thisinteraction playsimportant rolein under-
standing the resistivity of the conductors.

D. Case: Equivalent quantum radiusof the
electron at small velocity

The average electron velocity in copper ac-
cording to the drift theory is 3.54E-05 m/sec. This
is much smaller, than the sixth subharmonic veloc-
ity. Obviously the expected equivalent radius will
have much larger value. In such conditions, the
volume of the electron structure become insignifi-
cant and we can ignore it. The configuration of the
E-field lines in very small velocity is also change.
The density of the terminated lines at the boundary
conditions becomes more uniform. The helicity
however is preserved. Having in mind all this con-
siderations, we may accept that the E-field occupy
a spherical volume. Then the energetic equivalent
volumeis expressed by v, = gnqu (3.34)

The contribution from the term o/2r will be
neglected for smplicity.

We can not apply a similar approach for cal-
culation of Ry as the previous cases, because, the
boundary conditions for large volume does not
work. Instead of that, we will consider the change
of the magnetic flux @ due to the slower electron
rotation in comparison to its rotation at first har-
monic. Consequently, now we will reference the
magnetic flux surface s to the surface correspond-
ing to the equivalent quantum radius at first har-
monic.

S= 4752Rcreql

where: r,, = 1057x10 " is the equivalent ra-
diusfor afirst harmonic motion

Inasmall velocity case, the rotating speed of
the electron will be smaller, but the fundamental
period is unchanged. Let to assume that the posi-
tron makes n cycles for a full electron turn Then
the n dependence of velocity v according to Eqg.
(3.16) is:

oc

n= 9 (3.35)

The lattice twisting will be n times smaller,
and so the magnetic flux also:

o= (3.36)

ng

The magnetic strength then is:

hv 1

acqu04n2Rcreql

-9 _
He ot (3.37)
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The volume expressed by Eq. (3.34) is the
equivalent volume for the quantum interaction. Di-
viding the magnetic moment by this volume, we
get:

MBe _ gh 1 _

Veq 4nmeg7t R3

(3.38)
eq
Solving (3.37) and (3.38) for Ry, We get the
equivalent quantum radius in function of the ve-
locity (for v «oc).
aCq2L R,

13
- 3 c eql
Mm =
{ 4mtmgv

(3.39)

Thegraphica plot of EQ. (3.39) for velocity
range between 10® m and 1 m is shown in Fig.
3.18, where the velocity isin alog scale.
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Fig. 3.18
Quantum radius of the electron for low ve-
locities

The graphical plot of Eq. (3.39) shows signifi-
cant increase of the magnetic radius at very low ve-
locity. Such velocities exist in the metal
conductors.

Example: The average electron velocity in
copper according to the drift theory is 3.54E-05 m/
sec. Then the corresponding magnetic radius ac-
cording to Eq. (3.39) is 2.77E-10 m. This is com-
parable to the gaps between the atoms. The
magnetic field of the moving electron, obviously
interact with the protons fields. This could explain
the ohmic resistance. The existing so far classica
theories failed to explain the ohmic resistance in
metals. The quantum mechanics gives explanation
by the wavefunctions, but failsto give aclear clas-
sical explanation.

The quantum radius for small velocities, can
be expressed also by the electron kinetic energy.
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For this purpose, the velocity in Eg. (3.39) can be
substituted by the expression (3.40), where, the en-
ergy isineVv.

2E
o [PEad
me

The equivalent quantum radius in function of
the kinetic energy is:

(3.40)

1/3
Req = {w} for g, «136 ev (3.41)
4h, [2E,,m,

where: Eg, - is the electron kinetic energy in
(eV).

The quantum radius dependence of the veloc-
ity isvery important feature of the moving electron.
From one hand it helps to analyse the orbital mo-
tion conditions in the atoms. In this aspect, the
eguations (3.29) and (3.31) are relevant. From the
other hand, the quantum radius helps to understand
the interaction of the free electrons in the metals
with the atomic nuclei of the metallic crystal. In
this case the equations (3.39) and (3.41) are rele-
vant.

We may summarizethe analysisin thefol-
lowing conclusions:

» At optimal confinevelocity correspondingto
energy of 13.6 eV, the transver se equivalent
guantum radiusis smallest.

» Thedependence of the electron quantum
radius from the velocity helpsto under stand
the orbital motion of the electron around the
proton and the ohmic resistance in the met-
als.

3.11.A Relativistic motion of the electron. Rela-
tivistic gamma factor and quantum efficiency.

So far the quantum motion of the electron for
optimal and suboptimal velocity was discussed.
The electron motion with velocities larger than op-
timal one also exhibit a quantum feature, but the
guantum effect is weaker. For the correct physical
analysis of the electron behaviour, two relativistic
factors are necessary to be considered: the relativ-
istic gammafactor and the quantum efficiency. The
first oneiswell known from the relativistic theory.
The second one is not considered so far, but it is
very important for the correct estimation of the
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electron behaviour. It directly reflect aso to the be-
haviour of the relativistic muon. In the present par-
agraph, both factors are derived.

According to basic postulates in the special
relativity, the Lorentz transformation is used,
where the gamma factor is given by

v = 1-ViA (3.42.A)

In the next paragraph the same gamma factor
will be derived based on the electron motion be-
haviour.

3.11.A.1 Quantum efficiency

(A) Quantum efficiency at suboptimal velocity

The quantum effect in thiscaseis strong, so it
Is enough to derive expressions in function of sub-
harmonic number.

Quantum efficiency dependence from the
boundary conditions

The surface of the boundary conditions is
proportional to the magnetic radius, and latter to
the subharmonic number. The smallest boundary
surface corresponds to the first harmonics whose
quantum efficiency is a maximum. Consequently
Ngc = Un , where n isthe subharmonic number.

Quantum efficiency dependence from the
hummer drill effect

This problem is discussed in Chapter 4 in re-
lation with the Fractional quantum Hall experi-
ments. It is shown that the efficiency is inverse
proportional to the subharmonic number.

Mup = 1/n

The total quantum efficiency is a product of
both type efficiencies. This is the quantum effi-
ciency for suboptinal velocity motion.

n = 1n’ (3.42.B)

The quantum efficiency affects the line
width. Then comparing the linewidhts (normalized
to the wavelength) from the different series of the
Hydrogen atom, we may test the validity of Eq.
(3.41.8). The Lyman series should contain the nar-
rowest lines.

(B) Quantum efficiency at superoptimal veloc-
ity, (velocity above the optimal one but lower,
than the relativistic velocities)

In this case the quantum efficiency is deter-
mined by the efficiency of the hummer-drill effect.
The analysisin this case is similar as the hummer-
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drill effect analysisin the Quantum fractional Hall
effect, discussed in Chapter 4.

(C) Quantum efficiency at relativistic velocities.

The decreased efficiency inits caseisrelated
with the large cosine between the vector of trace
velocity and the vector of the electron-positron os-
cillation.

Fig. 3.18.A shows the confined electron mo-
tion for both cases: a. - for optimal velocity and b.
- for superoptimal one. The front end traces are
shown by dash line, while the electron shape with
thick blue line. The trace projection on a plane nor-
mal to the axial velocity V isacircle, shown below
the helical trace. The selected points from the trace
are denoted in the circle projection with the same
letters with primes (*).

Vo= Vot
|1“rtr| =c

Vo =Tppt << ¢
|Vt1’| ==

A . A=
~—7 B 7
:\\ Tv

Cqo 5 Y

— s o
ZTE I
[ Vt
a h.

3.18.A

Electron motion with optimal (a.) and
superoptimal (b.) velocity

We will consider the two times:

T, - the motion cycle time; T is the period of
one full electron system rotation.

t. - the proper frequency time, equal to the
Compton time
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This two times determine two different prop-
erties:

* Thecycletime determinesthe wavelength of
the generating wave (also the magnetic
radius) - the magnetic interaction with CL
Space

* Theproper frequency time determinesthe
guantum interaction with the CL space
(interaction with the SPM vector by the
hummer-drill effect)

L et to make the assumption, that the proper
frequency of the electron-positron system isun-
changed, t, = 1/v, = const, i. €. it does not depend
of the axial velocity. If p. A isour initia reference
point, the electron system will complete one full
proper cyclein p. B, earlier than the completion of
the motion cycletimein p. C.

It is convenient to unfold the trace motion, as
shown in the bottom of the Fig. 5.18A for both cas-
es. In this way the proportional distances between
the points and the angles between the vel ocity vec-
tors are preserved. They are given in a table form
below.

AA’ AC AB A'C
peths: 2R, cTe 2R, VT,
velocity:  2rR//T, c 2nRJT, V

We see that:

For case a. the direction of the trace velocity
V, coincides with the direction of the oscillation
velocity vector Vi, while for case b. they are
crossed by angle o . Inthefirst case the quantumin-
teractionisoptimal, whileinthe second oneitisre-
duced. Accepting the efficiency at optimal velocity
as unity, the efficiency in the second case could be
expressed as aratio of AA'/AB’. Thisis equal to
theratio of AB/AC. Having in mind, that AB = AA',
the quantum efficiency become

AA'
= — = cosO
n AC

From the timing ratio, we have also:

t '
_E:A_B.:A_Ai:(;ose
T AC AC

C

From the unfolded trace we have:
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AA=2rR,, and AC = Jan’RC+ VT2,
Substituting and eliminating all parameters but V
and c we arrived to the final equation for the quan-
tum efficiency for relativistic velocities.
n = 1=V (42.D)
The plot of the quantum efficiency is shown
inFig. 3.18.B.
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Fig. 3.18.B
Quantum efficiency of the electron motion
at relativistic velocities

From the point of view of the physical expla-
nation, the trend of the quantum efficiency is quite
reasonable. We seethat it appears asinverse func-
tion of the relativistic gammafactor.

3.11.A.2 Relativistic gamma factor

According to the specia relativity, the gam-
mafactor isequal to theratio between therelativis-
tic and the nonrelativistic momentum: y = p,/p. It
isalso equal to theratio between therelativistic and
not relativistictime: y = T,,/T.

According to the physical analysis of the
electron motion in the previous paragraph, the cor-
responding two time periods are: T=1t and
T,y = T.. Thenthe gammafactor is

(3.42.E)

When expressed by ¢ and V, the gamma fac-
tor is:

v=a-VicA " (3.42.F)

Conclusion: The relativistic gamma factor
and the quantum efficiency are inverse functions.

This should be taken into account, when estimating
the physical properties of the rea particles with
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short lifetime. Some processes may obtain quite
different physical explanation. Thisisvalid in full
for the muon lifetime, for example, leading to adif-
ferent explanation of the factors that influence its
decay

3.12 Quantum loops and or bits

So far we analysed the quantum motion of the
electron system in open trgectory. This does not
exhaust all the possibility of the electron quantum
motion. One special case till exists. This is the
quantum motion of the electron in a closed loop.
The term quantum loop is more universal, meaning
a closed trgjectory. A typical case is the electron -
positron oscillation trajectories. The term quantum
orbit is more suitable for the electron motion
around the proton. In this case the proton can serve
as aframe of reference, because of its large mass.

3.12.1 Quantum loop conditions

Now we will analyse the motion of anormal
electron system, from a point of view of a station-
ary frame. When performing quantum motion as
repeatabl e |oops some portion of the electron orbit
may have equipotential paths. The magnetic field
created by this motion also could tend to extend the
length of these paths. In this conditions the elec-
tron - positron system oscillates with small ampli-
tudes. Then we have the following proper
frequencies:

Ve, = Ve - Proper frequency of electron - positron (3.43.a)

ep
Ve = 3v, - proper frequency of the positron- core  (3.43.b)

L et consider two cases of motion:

- very slow motion approaching zero velocity

- motion corresponding to energies from 0.3
to 13.6 ev

In the first case the velocity of both ends of
the positron are equal and symmetrical in respect to
the stationary CL nodes.

In the second case the velocities of both ends
of the positron, are not symmetrical in respect to
the stationary CL nodes.

If trying to reference the period of the v . os-
cillations to the stationary nodes we will find the
following features:
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a) the electron system isdisplaced axially due
to the second order helicity by distance equal to the
Step s,.

b) the internal positron system is carried by
the electron shell

c) the path that the positron system is carried
depends of the velocity of the electron shell

If we compare the feature a) with the bound-
ary conditions of MQs, we will see, that: The dis-
placement due to the step s, does not have a
symmetrical counterpart in the boundary condi-
tions. Consequently it will cause a phase differ-
ence between the proper frequency of the
electron-positron system and the SPM frequen-
cy of the stationary CL nodes.

Let us estimate this phase delay for electron
motion with optimal confined velocity (E = 13.6
eV). For this purpose we will present the single coil
of the electron as unfold helix, shown in Fig. 3.19.

Fig. 3.19
The electron as unfold single coil helix

The hypothenuse of the triangle can be re-
garded as a path of the front edge of the electron,
while the kathet s, isits axial displacement. If s,
approaches zero, the discrepancy between the os-
cillations with the proper frequency and the CL
node oscillations will disappear. The both frequen-
cies are equal to the Compton frequency. For some
finite velocity intherange o<v<ac, the phasedif-
ference from the discrepancy should be proportion-
al to s,. We need to reference the phase difference
to thefull revolution. Then it could be expressed as
a ratio between the kathet s, and the hypotenuse
(the other option - the ratio between the two kathets
does not provide consistent result later). So the
fractional phase differenceis:

Ag _ %

2n  [AnPR2 + 2

= 7.2073531x10° = o (3.43.0)

Copyright © 2001, by S. Sarg

(Corrected: Jan 2004)

Thefractional phase difference, defined in
such way appears equal to the fine structure
constant. We can refer to it as a phase difference
per oneturn.

The definition of the quantum loop isthe fol-
lowing:

Thequantum loop isaclosed loop tr aj ecto-
ry, whoselength correspondsto awhole number
of carrier oscillations.

Under therm carrier we understand the whole
oscillating system containing two proper frequen-
cies,

L et take into account only the discrete veloc-
ity values of the system, corresponding to the quan-
tum motion. These velocities are defined by the
subharmonic number. The triangle shown in Fig.
3.19 could be considered as a path of the front edge
of the electron. At first harmonic (subharmonic) it
has the same dimensions, as shown in Fig. 3.19. At
any other subharmonic the triangle is similar, but
with sides divided to the subharmonic number.
Then the phase difference given by Eq. (3.43.c) ap-
pears not for oneturn of the electron system, but for
one proper cycle. Then for a quantum motion at n
subharmonic, the phase difference accumul ated per
one turn of the electron systemiis:

%;;p(n) = na (3.43.d)
3.12.2 Quantum loops and orbitsfor electron
with optimal confined velocity. Embedded sig-
nature of fine structure constant.

Let usfind the path length at which the quan-
tum loop condition for the electron system is ful-
filled. The electron system possesses two proper
frequencies and we must check the quantum loop
condition for both of them. It is reasonable to look
for path length defined by some CL space parame-
ter. One of this parameter is the Compton wave-
length 1, = Agpy
If an electron possessing a first harmonic velocity
travelsin aclosed loop with length 2., the number
of turns Nt is:

Ny = A s, = 137.03234 (3.43.d)

The value of Nt could be regarded as a con-
dition for a phase repetition for two consecutive
passages through a chosen point in the loop, keep-
ing in mind a confined (screw-like) motion of the

3-33



BSM Chapter 3. Electron system (electron)

electron. The trace length of 2, = 2.4263x 107 (m),
however, is quite small, when comparing to the
Bohr orbit length of 2ra, = 3.3249187x10°° (m).
Therefore, we may ook for a phase repetition con-
ditions at a larger loop length. From Eq. (3.43.d)
we see that Nt is close to 1/0 = 137.036 and this
seams not occasional. Then we may substitute Nt
in EQ. (3.43.d) by 170 and multiply the expression
by x.. Thelatter isaCL space parameter, from one
side (a distance that the SPM phase propagates for
one SPM cycle) and from the other - the circumfer-
ence length of the electron structure. In such case
we obtain:

Np = Olcxc = 3.24918460x10 "° (3.43.¢)

We see that the obtained value of Eq. (3.43.€)
having dimensions of length is equal to the Bohr
orbit length given by CODATA 98 up to the Sth
significant digit.

a, = 3.24918460% 10 (M) (3.43.1)
where. a, = 052017721x10° (m) - isthe radius of
the Bohr atomic model of hydrogen.

The term 1./0 Of the expression (3.43.e) is
not something new. Theimportant fact, however, is
the way of its derivation related with the suggested
physical model of the electron. The obtained loop
length appears equal to the orbit length of the Bohr
atom, defined by the Bohr atomic radius, ag. The
latter is one of the basic parameters used in Quan-
tum mechanics. From the BSM point of view, how-
ever, the physical meaning of this parameter
appears different.

According to BSM concept, the well
known parameter ag used as a radius in the

Bohr model, appears defined only by the quan-
tum motion conditions of the electron moving
in a closed loop with an optimal confined veloc-
ity corresponding to an electron energy of 13.6
eV. Then the main characteristic parameter of
the quantum loop isnot itsshape, but itslength.

The identity of Equations (3.43.) and
(3.43.f) aso indicates that the signature of the
fine structure constant is embedded in the
guantum loop.

Now we may use the new obtained meaning
about the quantum loop associated with the Bohr
orbit, and more specifically the orbital length 2ra, .
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For a motion with an optimal confined velocity,
the number of electron turns in the quantum orbit
is equal to the orbital length divided by the helix
step (Se)-

2na, A
"% - Zc - 18778365 (tUrns)
Se  OSg

Let find at what number of complete orbital
cycles (for orbit length of 2ra,) the phase repeti-

(3.43.9)

tion of the first and second proper frequencies of
the electron is satisfied (in other words the small-
est number of orbital cycles containing whole
number of two frequency cycles). The analysis of
the confined motion of the electron in Chapter 3
and 4 of BSM indicates that its secondary proper
frequency is three times higher than the first one
(the first one is equal to the Compton frequency).
Equation (3.43.g) shows that the residual number
of first proper frequency cycles is close to 1/3. If
assuming that it is exactly 1/3 (due to a not very
accurate determination of the involved physical
parameters), then the condition for phase repeti-
tion of both frequency cycles will be met for three
orbital cycles. The whole number of turns then
should be (31,)/(as,) Substituting s, by its expres-
son given by Eg. (3.13.b) and knowing that
v./c = L, We get

2 1/2
3(1-a)
2
o

(turns) @

We have ignored so far the relativistic cor-
rection, but for accurate estimation it should be
taken into account. The relativistic gamma factor

for the electron velocity of v, =oc is

Y = (1-® 2. Multiplying the above expression
by the obtained gamma factor we get.
3/a® = integer (turns) (b)

The validity of obtained expression (a) and
(b) could be tested by the following simple proce-
dure: calculating these expressions by using the
best experimental value of o, rounding the result
to the closer integer (satisfying the condition for
two consecutive phase repetitions) and recalculat-
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ing the corresponding value of «. The rounded
integer (awhole number of turns) could be correct
only if the recalculated value is in the range of the
accuracy of the experimentally determined o. Let
using the recommended value of experimentally
measured o according to CODATA 98.

o = 7.2973525(27)x 10> (CODATA98)
where, the uncertainty error is denoted by the dig-
itsin the brackets.

The calculated values of o from Eq. (a) and
(b) exceeds quite a bit the uncertainty value of
experimentally determined o given by the
CODATA 98. Consequently, the condition for
phase repetitions of the two proper frequencies is
not fulfilled for three orbital cycles with total trace
length of 3x2na,. Therefore, we may search for

the next smallest number of orbital cyclesin which
the phase repetition conditions are satisfied. It
stands to reason that the approximate value of the
orbital cycles could be about 137 (1/0). Then if
not considering relativistic correction, the corre-
sponding number of electron turns is (1-o%/a’.
When applying a relativistic correction (multiply-
ing by the estimated above gamma factor for the
kinetic energy of 13.6 eV) the number of the elec-
tron turns becomes 1/0°. The phase repetition
conditions will be satisfied if this number is inte-
ger. Substituting o by its value from CODATA 98
weget: 1/a° = 2573380.57

It is interesting to mention, that the closest
integer value of 2573380 is obtained by Michael
Wales, using a completely different method for
analysis of the electron behavior (See Michael
Wales book “Quantum theory; Alternative per-
spectives’, www.fervor.demon.co.uk).

We may use one additional consideration, for
validation of the above obtained number. The
number of turns multiplied by the time for one turn
(the Compton time) will give the total time on the
orbit (or the lifetime of the excited state, according
to the Quantum Mechanics terminology). If
accepting that the total number of turns are

2573380 then we obtain alifetime of 2.0827x1014
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(s), that appears to be at least two order smaller
than the estimated lifetime for some excited states
of the atomic hydrogen.

Following the above analysis we may check
for phase repetition at 1/«* turns. The participa-
tion of o at power of four is in agreement aso
with the following consideration: In the analysis of
the vibrational mode of the molecular hydrogen,
an excellent match between the devel oped model
and observed spectra (section 9.7.5 in Chapter 9 of
BSM) is obtained if the fine structure constant par-
ticipates at a power of four. In such case we may
accept that the phase repetition conditions is satis-
fied for a number of turns given by the closest
integer in EQ. (3.43.1).

170 = integer (3.43.h)

Using the CODATA value of o« we obtain
1/0* = 352645779.39 . Rounding to the closest integer
we obtain an expression for the theoretical value
of o (if its experimental estimation is accurate
enough).

o = (352645779) 4 = 7.2073525x 107 (3.43.0)

The small difference of the theoretically
obtained value of o from the experimental one
could be caused by an experimental error. One of
the methods for accurate experimental estimation
of o isbased on the measurement of the Josephson
constant, K;. Its connection to o« is given by the

expression

-1/4

_2(_ 20 2
I c(uomexc)

where: p,- is the permeability of vacuum,
M - 1S the electron mass, ¢ - is the light velocity,
A, - 1Sthe Compton wavelength.

The accuracy of o according to this method

depends mostly on the accuracy of the Josephson
constant measurement, because all other parame-
ters are accurately known. The recommended
value for this constant according to CODATA 98
iS K, = 483597.898(19) x 10° (HZ/V). If replacing o in

the above expression of K;with the value obtained
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by Eqg. (3.43.i) we will get the value of Kjthat isin

the uncertainty range given by the CODATA 98.
The conclusion that the orbital time duration

may depends only on o is reinforced also by the
consideration that the Compton wavelength, .,
wasinitialy involved in the analysis (Eq. (3.43.d),
(3.43.e), (3.43.1)), but it disappeared in the derived
Eqg. (3.43.i)). Consequently, the phase repetition
condition is satisfied not only for the two proper
frequencies of the electron, but also for the SPM
frequency of the CL nodes included in the quan-
tum orbit (%, is the propagated with a speed of

light phase of the SPM vector for one SPM cycle
of the CL node (SPM frequency = Compton fre-
quency)).

In 83.5 it was described, that the central core
ismoving in the CL zone of magnetic quasispheres
(MQ'’s). When the quantum loop condition is satis-
fied, the phase of core motion appears asrepeatable
in respect to the stationary CL nodes. The arrange-
ment of MQs along the orbit trace will have a heli-
cal shape. Thisisillustrated in Fig. 3.20.

trace e

I

Fig. 3.20

Electron motion in quantum loop. MQ traceis
shown by green line with a shape of close loop helix.
The momentary position of the electron structureis
shown as ablack single turn

It lookslike the motion of the electron system
islikeascrewinginahelical curve. The MQsalong
thishelical curve possessastrictly determined spa-
tial order.

There are following important features of
the electron motion in such conditions:

(1) The phase difference between the sta-
tionary MQs along helical curve and the oscil-
lating central core is zero for any point in the
curve.

((2) In the absence of external electrical
and magneticfield, thereisnot a phase dephasa-
tion in the closed loop of the aligned MQs, i. e.
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there is not disturbing interactions caused by
the CL space environments.

(2) In presence of external electrical or
magnetic field up to somelimit, the electron or-
bit could exhibit self adjusted properties.

The second feature, is valid only in the ab-
sence of external electrical field. The “near field”
of the electrical field of the proton, for example, ex-
hibits spatial configuration. In such conditions, the
above feature becomes valid only for the boundary
orbit. For other orbits, the total phase sum is pre-
served, but continuous phase difference appears, as
a running phase in the closed helica curve. This
causes a phase shift in the helical loop of MQs and
creation of magneticline. Thiseffect will be addi-
tionally discussed in Chapter 7.

One question here may arise: The MQs oscil-
late with SPM frequency equa to the Compton
one, while the positron - core frequency is three
time higher? How the phase can be kept close to
zero in this case?. The explanation is in the SPM
vector quasisphere. From the spatial point of view,
the bumps are much narrower, than the sinusoids.
From the temporal point of view, however, they are
much wider, because, the SPM vector spends much
moretimeinthe bumps. Fig. 3.21 illustratesthe in-
teraction process between the oscillating central
core and one of the MQ bumps, unfolded in time.
The time diagram should be considered in frame
travelling with the electron.

SPM amplitude

ENARAARAAAANAD ¢
2IVVVY VYV VTV
U Fig. 3.21

I nteraction between central core and SPM
vector of stationary MQ nodes

The interaction between the two oscillations
with different but constant ratio of their frequencies
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is possible due to the ratio t,/t,>1, where ty is a
bump time and t,, is valley time of the SPM vector.

The provided concept of the fine structure
constant embedded in the quantum loop, which de-
fines the quantum orbit matches to the analysis of
Balmer seriesin Hydrogen, provided in Chapter 7,
where o isinvolvedintheorbital timeof theelec-
tron (time duration of the electron circling in one
guantum orbit).

3.12.2.A. Quantum or bitsand timeduration for
a stable orbit

It is apparent from the provided analysisthat a sta-
ble quantum loop is defined by the repeatable
motion of oscillating electron. The shape of such
loop, however, is determined by external condi-
tions. Such conditions may exist in the following
two cases:

- a quantum loop obtained between particle with
equal but opposite charges and same mass, as in
the case of positronium (see Chapter 3 of BSM)

- a quantum loop obtained between opposite
charged particles but with different masses (a
hydrogen atom as a most smple case and other
atoms and ions as more complex cases).

In both options the quantum loops are
repeatable and we may consider that any
guantum orbit is formed of whole number of
guantum loops.

A single quantum orbit could contain one or
few serially connected quantum loops (in both
cases the condition for phases repetition is pre-
served). It is obvious that the shape of the quantum
orbit is defined by the proximity field configura-
tion of the proton (or protons). The vacuum space
concept of BSM alows unveiling not only the
electron structure but also the physical shape of
the proton with its proximity electrical field (chap-
ters 6 and 7 of BSM). The shape of any possible
guantum orbit is strictly defined by the finite geo-
metrical parameters of the proton.

Let considering now the induced magnetic
field of the electron motion in a quantum orbit by
using the electron magnetic radius. The magnetic
radius of the electron moving with different sub-
harmonic numbers n is analyzed in section 3.1,
Chapter 3of BSM. Itsvaluefor n = 1 (akineticen-
ergy of 13.6 eV) matches the estimated magnetic
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radius corresponding to the magnetic moment of
the electron. For larger numbers (decreased elec-
tron energy), however, the magnetic radius shows
an increase. The physical explanation by BSM is
that at decreased rate of the electron rotation its 1G
field of the twisted internal RL structure is able to
modulate the surrounding CL space up to a larger
radius until the rotating modulation of the circum-
ference reaches the speed of light. Keeping in mind
that the circumference of the electronisequal to the
Compton wavelength (with a first order approxi-
mation) the circumference length of the boundary
(defined by the rotation rate) should be a whole
number of Compton wavelengths. Then the integer
number of the Compton wavelengths corresponds
to integer subharmonic number. In such case, the
orbiting electron with optimal or sub-optimal ve-
locity could not cause external magnetic field be-
yond some distance from the nucleus. This
provides boundary conditions for the atoms, if ac-
cepting that in any quantum orbit the electron is
moving with optimal or sub-optimal confined ve-
locity (integer sub-harmonic number). Here we
must open a bracket that the higher energy levelsin
heavier elements come not from a larger electron
velocity but from the shrunk CL space affected by
the accumulated protons and neutrons. Such CL
space domain is pumped to larger energy levelsin
comparison to the CL space surrounding the hydro-
gen atom.

The existence of the IG law changes signifi-
cantly the picture of the orbiting electron in a prox-
imity field of the proton. In Chapter 7 of BSM an
analysis of Balmer model of Hydrogen atom is de-
veloped based on the BSM concept of the electron
and proton and the IG law influence on the orbital
electron motion in the proximity to the proton. It
appearsthat thelimiting orbit hasalength of while
all other quantum orbits are inferior. This conclu-
sion isvalid not only for the Balmer seriesin Hy-
drogen but also for al possible quantum orbits in
different atoms, if they are able to provide line
spectra. Therefore, the obtained physical model of
Hydrogen puts a light for solving the boundary
conditions problem of the electron orbits in the at-
oms.

Time duration for a stable orbit (lifetime
of excited state).
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The following analysis could be valid only
for the hydrogen, where the influence of the proton
mass on the surrounding CL space appears to be
negligible.

Keeping in mind the screw-like confined mo-
tion, the axial and tangential velocities will be in-
verse proportiona to the subharmonic number.
Then the condition for phase repetitions for a mo-
tion with a subharmonic number n will be satisfied
for n times smaller number of electron turns, or the
guantum orbit will be n times smaller. It is reason-
ableto consider that thefirst and second proper fre-
guencies of the electron are stable and not
dependent on the subharmonic numbers. Then for
estimation of the time duration of the orbit (thelife-
time of excited state) it is more convenient to use
the number of the cycles of thefirst proper frequen-
cy of the electron. It is equal to the number of elec-
tron turnsfor n = 1 . In such way we arrive to the
conclusion:

(@) If conditions for stable quantum orbit are
defined only by the phase repetition conditions and
the whole number of Compton wavelengths, the
time duration (lifetime) of the orbiting electron
does not depend on the subharmonic number of its
motion.

(b) If (a) isvadlid, the lifetime of the excited
state will be equal to the product of the total num-
ber of the first proper frequency electron cycles
(according to Eq. (3.43.h)) and the Compton time
(thetimefor one electron cyclewith thefirst proper
frequency).

According to condition (b) the theoretica
lifetime for an excited state of the hydrogenis
1= t/0" = A/ (ca’) = 285407x 107 (5)  (3.43.K)
where: t, = 1/v, - isthe Compton time.

Note: The obtained Eq. (3.43.k) does not take
into account the possible modification of the sur-
rounding space in a close proximity to the proton.
Such modification (a slight shrinkage, or a space
curvature) may cause aliasing for the phase repeti-
tion conditions due to affected SPM frequency and
Compton wavelength, while the first and second
proper frequencies of the electron are obviously
stable. For heavier atoms such modification may
appear much stronger. For elements with more than
one electron, the mutual orbital interactions aso
may lead to increase of thereal lifetime.
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3.12.3 Quantum loops and orbits, for electron
with any suboptimal quantum velocity

The analysis so far was done for an optimal
confined motion - first harmonic guantum motion.
Let to see, how the quantum loop condition is sat-
isfied for motions with subharmonics.

If the electron is moving with a second sub-
harmonic, itsvelocity istwo times slower. The pos-
itron - core system will make the same number of
oscillations for twice shorter path. Consequently
the same conditions for a quantum orbit are satis-
fied for twice shorter orbit. For quantum motion
with n subharmonic the quantum loop will be n
time shorter. This conclusion is evident also by the
Eq. (3.43.d). Then the length of the quantum orbit,
may be expressed by the equation:

Lgo:

Mo 2 2 (3.43))

on

Lgo() =

where: n - is the subharmonic number

In asimilar way as we used the term subhar-
monics for the quantum motion of the electron, we
may use it again for the quantum loop. Then the
first harmonic quantum loop corresponds to elec-
tron motion with energy 13.6 eV, the second har-
monic quantum loop - to 3.4 eV and so on.

The orbit shape in the quantum loop is not
important. The quantum loops are very important
features of the electron motion around the protonin
the atoms. When discussing the Hydrogen orbitsin
Chapter., we will see, that they are folded 3D
CUrves.

The quantum orbits play important role, also,
between the atomic connections in the molecules.
In this aspect additional combinations of the quan-
tum loops are possible: Two or more quantum
loops can be connected in serial, giving alonger
quantum loop. Such loops are possible in the
atomic nuclei and between atoms. Experimental
evidence for such loop exists, by the observed “se-
ries” in the photoel ectron spectra. Thiswill be dis-
cussed in Chapter...

Summary:

* Thequantum orbitsare closed loop electron
trajectories, containing whole number of
central core oscillation periods

» Thecentral coretracein thequantum loop is
a helix of aligned MQs.
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* In absenceof external electrical field, there
isnot distributed phase shift between
aligned MQs and the CL space MQs.

* When the quantum loop is spatially matched
to external electrical field, a dephasation
appear s between the loop aligned MQs and
external CL space MQs. Thismeansthat the
MQsin the helix are connected in magnetic
line.

» Thecharacteristic parameter of the quan-
tum orbit isthe orbit length, so its shape
does not need to becircular.

* Thequantum orbitsarepossiblefor thefirst
har monic and subhar monic quantum veloci-
ties. Consequently the attribute n-subhar -
monic quantum orbit iscompletely
adequate.

» Thelength of the n-subharmonic orbit isn
times shorter, than thelength of thefirst har-
monic (optimal confined velocity).

» Subharmonic quantum loops are ableto be
connected in series, forming a common
guantum or bit.

3.13 Estimation of basic CL parametershby the
parameter s of the electron system. Derivation
of the mass equation.

3.13.1 Physical interpretation of inertial mass
ratio

In Chapter 6 the similarity between the elec-
tron and muon (and positron and muon) is dis-
cussed. The muon is a second order structure
whose central radiusisthe same as the electron ra-
dius Rc. The evidence of this comes from the fact
that the muon can oscillate longitudinally and when
it crashes, only asingle coil could be left from one
of its edges. All other portion of the muon helical
structure together with itsinternal latticeis disinte-
grated finally as neutrino. When providing a phys-
ical interpretation of the mass and magnetic
moment magnetic moment we come to the conclu-
sion that the muon has 206.7 more windings than
the electron system. Then their volume ratio of
their FOHS is also equal to this value. It follows,
that the inertial mass of the muon isequal to thein-
ertial mass of the electron multiplied by their vol-
ume ratio that is 206.7. This can be expressed by
the equation:

Copyright © 2001, by S. Sarg

(Corrected: Jan 2004)

He - My _ 206.76 = 206.76 windings

H,  mg 1 winding

From Eq. (3.44) follows, that thereisdirect
proportionality between the amount of the
FOHSIn thehelical structuresand their appar -
ent mass.

The ratio equivalence between the mass and
magnetic moment isvalid only for the similar heli-
cal structures. The same ratio, for example is not
valid between the electron and proton or neutron.
The latter two particles are formed of higher orders
helical structures. They aso have confined motion,
but, but due to a equivalent high order helicity.
However, all helical structures exhibiting confined
motion, contain FOHS.

From the considerations discussed above, the
following conclusions can be made:

Theinertial mass of any helical structure,
exhibiting confined motion, could be expressed
by the electron mass multiplied by theratio be-
tween the volumes of their first order helical
structures.

(3.44)

3.13.2 Relation between CL node displacement
from FOHS and the Broglie wavelength

Accepting the apparent mass of the electron
system as unity, wewill derive equation that relates
its mass to the cosmic lattice parameters.

The mass to magnetic moment ratio is valid
for similar structures like electron (positron) and
muon. Similar expression between the el ectron and
proton is not valid, because their shapes are differ-
ent. However there is some similarity in the behav-
iour of their structure. This is the confined motion
and we will use thisfeaturein the following analy-
Sis.

Itiswell known fact, that the elementary par-
ticles exhibit a wavelike motion with wavelength
determined by the Broglie equation:

n= (3.44.9)

mvy

where: & - isthe wavelength of the wave like
motion

m - isthe particle mass
v - isthe particle velocity

Now we will give the physical interpretation

of this equation from the point of view of prisms
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theory. It was pointed out that the confine motion
of the proton and neutron is due to their equivalent
helical step. The confine motion means that the
particle rotates. Consequently there is some perio-
dicity of the particle interaction with the lattice.
This periodicity will depend of the particle mass,
the motion velocity and ability of the particle to
twist the lattice. All this parameters are contained
in the Broglie equation. The important feature of
this equation is that the mass is involved, and this
will give usakey for derivation of theinertial mass
equation. Let to apply this equation for the elec-
tron, in case when v = ¢, and make some manipu-
lations, as shown in eq. (3.44.b).

-h _hc_he_c
e o peofe.o (3.44.b)
Now manipulating the dimensions of (3.44.a)
and (3.44.b) we get:
_ Nmsec _ N m _ torque
wavelength = = = 3.45
kgmsec - kgmsecZ  force ( )

From Eq. (3.44.a) we seethat A becomes the
wavelength of the SPM frequency (Compton fre-
quency in Earth local field) vepy vo When v = c.

From dimensional interpretation of Egs.
(3.44.8) and (3.44.b), shown as Eq. (3.45), we see
that the Broglie wavelength can be expressed as a
ratio of torque over force that moves the particle.
Thetorgueis aresult from the particle helicity.

The waves from particle having confined
motion could beregarded asa dynamical lattice
disturbance. Thewavelength of thisdisturbance
is equal to the torque that the particle exercise
on the lattice under the pushing force. The ex-
pression for thistype of disturbanceisvalid for
real velocity, without taking into account the
relativistic mass change.

The inertial mass can be regarded as a
static lattice disturbance causing a lattice dis-
placement. I nterpolating the Broglie expression
to motion with light velocity without taking into
account the relativistic mass change, provides
theinertial mass.

Having in mind that the optimal confined
motion of the electron is completely deter mined
by itsgeometry and the fundamental frequency,
we can make the following general conclusions:
» The electron system could serve asinertia

mass unit in the lattice measurement system.

Copyright © 2001, by S. Sarg

(Corrected: Jan 2004)

» The mass of the electron system can be
expressed by the lattice parameters, system
geometry and fundamental frequency.

3.13.3 Static CL pressure and apparent (Newto-
nian) mass of the helical structures

It has been aready mentioned, that the
Compton frequency is avalue of the SPM frequen-
cy a Earth local filed. Let to express the electron
inertial massfrom the Eq. (3.44.a), when v = ¢ and
apply some manipulation of the dimensions.

_h

me = (3.46)
Nmsec m?> _ N_md _ (pressure)x(ref. volume) (3.47)
nmsec TM2 M2p2gec (light velocity)2

From the dimensional equation (3.45) we see,
that theinertial mass can be expressed by the pa-
rameters shown in the brackets. Then the equation
for theinertial massof helical structure exhibiting
confined motion, will take aform given by (3.48).

P
m= —
2 "H(sh

(3.48)

where: Pg - is the cosmic lattice static pres-
sure on the
external shell of FOHS
V(g) - isthe FOHS volume referenced
to the measuring system (Sl in this case)
c -isthelight velocity

Based on the Eq. (3.48) we can formulate the
inertial mass in the cosmic lattice space:

» Theinertia mass of particlein the lattice space
is proportional to the static lattice pressure and
the volume of FOHS's contained in the parti-
cle, and inverse proportional to the square of
light velocity.

The inertial mass of helical structure with
second order helicity is equal to its gravitational
mass. So we may refer it asaNewtonian mass (or
Newton’s mass). The Newtonian mass is different
than the intrinsic mass. It does not take into ac-
count the amount of the intrinsic matter inside
of itsFOHS.

The pressure Pg is called static, because the
CL nodes are constantly displaced by the volume
of the FOHS. This volume is occupied by RL(T)
and even folded nodes could not pass through. The
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electron system contains only single coils of
FOHS (external negative and internal positive).
Knowing the total volume occupied by the RL(T)
we can estimate the static pressure, Pg, by applying
Eq. (3.48)

2
meC N

P = (3.49)

Vesi) m?
where: v, is the electron volume, ex-
pressed in units of S|
From Einstein mass - energy equation we
have:
m.c? = hv, = 511 Kev/c’ (3.50)
Then the static CL pressure, can be expressed
also by Eq. (3.51).

p.= Mo [ﬁ]
< =
Ve(SI) m?2

(3.51)

Checking the dimensional correctness of Eg.
(3.51) we get:

pressure = ﬁ(

(e - Nmeee L By, (352)
m

msec/)  m3 se¢ m3

The accepted in 83.6 relation s, = ggr,.
matches well with al the calculations, physical
considerations and models developed by BSM.
Having in mind the relation between R, and s, giv-
en by Eq. (3.9), we may express the static pressure
only by the CL parameters. We have two options
for this purpose: by the SPM (Copmton) frequency
or by the resonance frequency:

The static CL pressure, when using the
SPM (Compton) frequency is.
hv¢ge(1-o)
o= e %) = 1 3735810% [mﬁzJ (3.53)
o C

where: o - isthe fine structure constant, g -
isthe electron giromagnetic factor

The static CL pressure, when using the res-
onance parametersis:

_ hgg(l—uz)kaﬁb [ﬂ}

P
S m2

3.54
nazNéQdﬁb ( )
where: d., - is the node distance for not dis-
turbed CL field; v - isthe node resonance frequen-
CY; Ngo - isthe number of resonance cyclesfor one

SPM MQ cycle
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koo - 1S the quantum wave boundary con-
dition factor, given by Eq. (2.20.8):
Knp = ~/1+4712(0.61642) = 4
where: 0.6164 - is a factor complying to the
Rayleigh criterion
Theratiomy/Vin Eq. (3.49) could beregard-
ed as a mass density of the electron. A single coil
from muon has the same mass density. The pion
and kaon structures could be also referenced to this
value. Comparing Eq. (3.49) and (3.53) we see, that
the mass density of the electroniis:

Then the CL static pressure obtains a ssmple
form:

Ps = poC (3.56)

The expression (3.56), is quite convenient es-
pecially intheanalysisof theinertial features of the
particles and macro systemsin CL space and their
relativistic features. Such analysis is presented in
Chapter 10.

Egs. (3.51), (3.53) and (3.54) are fully con-
sistent and give one and asame value of CL static
pressure:

Ps = 1.373581x10”° [N/m?]

We might be surprised, in afirst gland, that
Ps has so large value. If estimating also the total
force exercised on the electron surface S, we will
find that it is quite large. But this an area where
large energy interactions takes place. The interac-
tionsinvolving the CL static pressure however are
static and we can not feel them. We can feel them
and detect them when change of the FOHS takes
place. Two type of changes exists for the electron
system: (@) separation of the positive (internal)
from the negative negative (externa) FOHS's; or
(b) destruction of the system. This topic is dis-
cussed in Chapter 6.

Substituting the value of Pgin Eq. (3.48) and
knowing the volume of the FOHS involved in the
particle, we can calculate its apparent mass in CL
space, referred as Newtonian mass according to
BSM.

M ass definition:

* Thenewtonian mass of any helical system in
CL space, exhibiting confined motion, could
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be determined by the fundamental parame-
tersh, v, €, and thetotal volume of its

first order helical structures.

By substituting Pg from one of Eq. (3.51).,
(3.53) or (3.54) into Eq. (3.48) we obtain the mass
equation, estimated by the CL space parameters
and the FOHS volume.

2 4 2
m= LDy [k
o C

where: Vg isthe volume of the FOHS

Note: The mass Eq. (3.57) in this form is
valid only for negative FOHS's. For positive
FOHS s the volume, the proper frequency and the
tangential to axial velocity ratio are different. This
requires use of correction factor (see 83.14).

* When themass equation isapplied for the
positive FOHS theright side of the mass
equation should get amultiplication factor of
2.25.

It isevident from Eqg. (3.48) that the mass of
any helical structure, is determined by the volume
of al of its FOHS' s. The electron system contains
only one coil of combined (positive inside a nega-
tive) FOHS. Consequently, it isasuitable massunit
for estimation the mass of more complex struc-
tures. Sometimes another task is more useful - de-
termination of the dimensions, when the massratio
is known. In this case another form of the mass
equation is more suitable. Substituting (3.51) in
(3.48) and introducing the volume normalisation
factor K, the newtonian mass equation takes a
form:

(3.57)

hv

m = C—ZCKV [ka] (3.58)
where; v v
K, = —H&) = _H (3.59)

Ve( Sl) \Y

e

Ky is aratio between the total volume of all
FOHS's of the particle with mass m and the elec-
tron volume.

Note: The mass equation (3.58) isvalid for
negative FOHS's.

For newtonian mass of positive FOHS's, we
must use the positron estimate of the Plank’s con-
stant and the positron’s proper frequency. In the

Copyright © 2001, by S. Sarg

(Corrected: Jan 2004)

next paragraph (83.14) it is shown, that the product
of both parametersis
vy, = (gh)(Zvc) = 225hv, (3.59.9)

Consequently, when applying the mass
equation for positive FOHS's the factor 2.25
should be used in the nominator.

The EQ. (3.58) provides results, consistent
with the practically estimated masses of the follow-
ing particles: proton, neutron, pion, muon. They all
have second order helicity. The experimentally es-
timated masses of the kaons are not consistent with
the calculated masses by the mass equation. The
kaon isstrait FOHS, but thisis not the main reason.
The reason is the following:

The mass of the kaon is not correctly esti-
mated in the experimentsin the particleacceler-
ators, because it possesses active jet during its
lifetime. This jet is from destructing internal
RL(R) or RL(T) structures providing reactive
forcesfor itsmotion. If these forces are not tak-
en into account the kaon mass is over estimated.
The calculations in Chapter 6 shows that the
kaon massisover estimated 11 times. The pulsar
theory presented in Chapter 12 also confirms
the evidence of the jet of single kaon in CL
Space.

The mass equation is valid for any single
particle up to the size of the proton (neutron). How-
ever it is not exactly valid for the atomic nuclei,
larger, than Hydrogen. When the number of pro-
tons and neutrons, forming the atomic nuclei, in-
creases, amass deficiency effect appearsdueto the
shrinkage of the CL space around the nuclel from
the IG(CP) forces (effect of genera relativity). In
such case the atomic mass appears dightly lower
than the sum of the neutrons and protons masses.
The mass difference between the apparent mass
and the summation of the protons and neutrons is
known as a bonding energy.

Summary notes:

» The static pressure of cosmic lattice is the pres-
sure exercised on the surface of the first order
helical structure.

» Theé€electron isaconvenient helical structure
for estimation of the CL static pressure.

» The apparent massof afirst order helical struc-
tureisequal to the product of the static pressure
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and the structure volume, divided by the square
of the light velocity

» Themassof any single helical structureis com-
pletely determined by the total volume of its
FOHS's.

» Theinertial massof aparticle containing FOHS
is completely defined by the CL space parame-
ters, without presence of external gravitational
field.

3.13.4. Physical nature of inertia and inertial
mass

The inertia can be regarded as an effect pre-
venting the helical structuresto get infinite acceler-
ation. This is a result of increased interaction
between the field of the internal RL(T) and the os-
cillating nodes of the CL space.

Any particleis consisted of helical structures.
Any type of helical structureis build of FOHS that
may be curled into second and third order helical
structure. Only FOHS contains interna RL(R) or
RL(T). They both are much denser than the CL
structure. So the node of CL space could not pene-
trate inside the FOHS.The excess CL nodes are
folded and placed among the CL nodes. They form
the dynamical CL pressure. The motion of any
FOHS through the CL space, however, causes con-
tinuous folding and unfolding of CL nodes. | this
process the both type of pressures are constant.
From the point of view of the moving FOHS the
static pressureisascalar, whilethe dynamical pres-
sure is a vector. The parameter of the dynamical
pressure, that determines it as a vector is the direc-
tion of motion. It isinvolved in the definition of the
inertia for any particle comprised of helical struc-
tures. In such aspect the inertial mass could be ex-
pressed by the equivalent interaction energy in CL
space: E = mc®. The gravitational mass is measura-
ble only if gravitational interaction exists. It also
have equivalent energy in CL space. A normal CL
space assures equivalence between the inertial and
gravitational massfor all type of helical structures.

Theinertial propertiesof particlesand macro-
bodies are discussed in Chapter 10.
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3.14. Free positron. Newtonian mass and
Planck’s constant estimated by itsmotion in CL
Space.

It is experimentally known fact, that the
masses of the electron and positron are exactly
equal. Then the Plank’s constant should have dif-
ferent estimate by the Positron parameters. In 83.14
it was concluded, that, the proper frequency of the
free positron is twice the proper frequency of the
electron system (Compton frequency), or
Vpe = 2vcHaving in mind the volume ratio of the
electron - positron K, = r3./r2 = 4/9 Wemay express
the positron mass.

h'v
pos = —EZEEg

Equalising the positron and electron masses
we get:

h' = (9/8)h (3.50)

where; h' - is the Plank’s constant estimated
by the positron parameters; v,,. - isthe proper fre-
guency of the free positron system, equal to twice
the Compton frequency

h'Vpe = 2.25hv, (3.50.8)

Eq. (3.50.a) shows, that when the mass
equation is applied for the positive FOHS, the
product hv,. isvalid, or the equation should get
amultiplication factor of 2.25.

3.15 Dynamic pressure of CL space

In Chapter 2 it was discussed, that the back-
ground uniformity of the CL space is maintained
by zero order waves. Thiswave arerelated with the
spontaneous creation of magnetic protodomains,
whose concentration is a constant parameter. In all
these effects the CL relaxation constant is in-
volved. Its accepted theoretical value was dis-
cussed in Chapter 2, §2.13B. The reciprocal vaue
of the relaxation constant has a dimension of fre-
guency. It could be called relaxation quasifrequen-
cy, because it is not defined by exact periodical
motion. It is given by the equation:

[HZ  (3.60)

te  (©

where: (c) - isalight velocity asadimension-
dless factor
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Defined in this way, we may use the relaxa-
tion quasifrequency only in the same measuring
system - the system Sl.

In asimilar way as the static pressure, given
by Eq. (3.51), we define a dynamic pressure, that,
however, is referenced to the relaxation quasifre-
guency of CL space, given by Eq. (3.60). The dy-
namic pressure is caused by zero point waves, with
wavetrain length of 2. . Consequently they may en-
velope around the electron or positron, but could
not penetrate inside the FOHS volume. So they
may exercise forces on the envelope of the helical
structures. For this reason the surface of the exter-
nal electron shell will be used for areference. The
dimensions of this pressure should be: [ N } .

m<Hz

Then the equation of the dynamical pressureis:

A%
Py = D¢

CSy(si

3 N
= 2.025786x10 [mz—HZJ (3.61)

where: s, q, - isthe surface of the electron’s
external shell envelope

The correct dimensions of Eq. (3.61) appear
when the light vel ocity participates with its dimen-
sions. For this reason the brackets used in Eq.
(3.60) are not used in Eq. (3.61).

Thedimension of the Eq. (3.61) isa*“ pressure
unit per frequency”. For thisreason it is called dy-
namical pressure. When applied to the envelope of
a helical structure it exercises an aternative force
with afrequency given by Eq, (3.60).

The Dynamical pressure is a pure CL space
parameter as the static pressure. for this reason it
could be expressed only by physical constants:

_ gehvgdl— o

Po 3

(3.62)
2nac
where: g, - isthe electron giromagnetic factor

Eq. (3.62) gives exactly the samevalue as Eq.
(3.61).

Note: Thedynamic pressure, isequally ap-
plicable for a negative and positive external
shells, and isnot influenced by thetypeof thein-
ternal structures. The static pressure, however,
has different value for negative and positive
FOHS's, and this should be taken into account,
when applying the mass equation. Thelatter con-
clusion is confirmed by the calculations for the di-
mensions of the proton and its substructures.
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The dynamical pressure provides a way for
indirect estimation of the ZPE by the measurement
of the behaviour of an atom, that is in equilibrium
conditions. This approach is used in Chapter 5 for
calculation of the background temperature of deep
CL. It corresponds to the experimentally deter-
mined parameter known as Cosmic Microwave
Background.

3.16 Scattering experimentsfor electron and
positron from the point of view of the BSM the-
ory.

The reader perhaps is aware of the large dis-
crepancy between the Compton radius of the elec-
tron and the radius determined by the scattering
experiments (scattering radius). While the Comp-
ton radius is 3.86E-13, the scattering experiments
give the value about 1E-16. This huge discrepancy
is solved by the BSM theory.

The “electron - electron” scattering model is
developed by C. Moller (1932) and the processis
known as a Moller scattering. The electron - posi-
tron scattering equation is derived by H. J. Babha
and the process is known as a Babha scattering.
Later modifications, based on the Dirac theory are
applied involving correction for the spin. Someim-
provements are also contributed by Scott, 1951;
Barber, 1953; Ashkin, 1954 and others. The Moller
and Babha equations has been corrected, but the
basic assumption is not changed. The basic as-
sumption for both type of scattering isthat the elec-
tron and positron are regarded as a point like
particles possessing a charge. The scattering mod-
elstakesinto account the kinetic energy of the both
particles and allowsto determine the angular distri-
bution and the differential scattering cross section.
From this data one can determine the size of the
electron with a priory accepted shape and features.

Let to the Babha scattering model for exam-
ple. The following parameters are taken into ac-
count: electron (positron) mass, electrical charge,
velocity, spherical radius, two spin parameters (+h
and -h).

Fig. 3.22 shows the angular distribution of
scattering events for Babha scattering at 29 GeV
(D. Bender et all., (1984). In the same figure the
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theoretical curve with Monte Carlo ssmulation is
shown.
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Fig. 3.22
Angular distribution of scattering events for Babha
scattering at 29 GeV (D. Bender et all, 1984)

The ordinate is in logarithmic scale because
the peak is very sharp. When assuming a spherical
shape, the data of the scattering experiment lead to
aresult, that the radius of the sphereisvery small -
in order of 1E-16 m. The existing so far theoriesare
not able to explain the huge discrepancy between
the Compton radius R, = 3.86159x10™° m, and the
scattering one.

From the point of view of theBSM, thedis-
crepancy between the Compton and scattering
radius of the electron, come mainly from the as-
sumption, that the electron does not possess a
structure. In the Moller and Babha scattering
models, the following factors are not taken into
account:

a. Theform factor: asphereisassumed, in-
stead of single coil of first order helical struc-
ture.

b. Theconfined motion in CL space

c. Theoscillation properties of the electron
subsystems

d. The possibility for different rotational
phase at the moment of meeting in the high en-
ergy collision

e. The intrinsic gravitation between the
helical structure
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f. The distributed charge appearance in
close encounter

It isevident, that the result could be quite dif-
ferent, if obtaining a scattering model with all this
factors. The model in this case, however, could be
quite complicated.

Fig. 2.23 illustrates the scattering process ac-
cording to the Moller and Babha assumptions -
casea., and BSM - caseb..

e+ e-
% [ \ _ a.
e+ e-
&1{7 =
Fig. 3.23

Electron positron scattering according to: a. Babha
model; b. Twisted prismstheory

Fig. 3.23.b illustrates the orientation, spin di-
rection and the phase difference ¢ in the moment
of meeting.

In the Babha model the spin moment has only
two values (+h/2 and -h/2). The both values may
express correctly the guantum energy, but only for
motions with suboptimal velocities. In the Moller
and Babha scattering, the vel ocities are much high-
er, so the quantum motion effect, according to
BSM issignificantly reduced. Then it isnot correct
to use the same spin momentum as in the low en-
ergy motion.

3.17 Positronium

The positronium is a state of temporally sta-
ble combination, between the helical structuresof a
whole or refurbished electron system, or virtua
guasiparticle, ableto pump the CL space. Intheend
of oscillating process a photon is emitted. The du-
ration of the oscillation is known as alifetime. Ac-
cording to BSM, only the far field electrical
charges disappear, but the mass of the system
does not annihilate.
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A pretty large number of combinations are
possible, but we can list here a few of them, for
which experimental evidence exists:

- Pslls, state

- Ps13s, triplet
- Ps 135, - 235, singlet
- PS’ -"positronium negative ion”

3.17.1 psils, state

This state involves oscillations between a
normal electron and a free positron. The free posi-
tron is directed toward the internal positron, and
both positron start to oscillate as a common system
in the electron shell. The oscillation process pro-
vide a CL pumping and terminates with emission
of two polarized gamma quant of 511 in opposite
direction. The obtained common helical structureis
comprised of the electron shell and two halves of
the positron shells. The opposite E-fields are
locked in the proximity (by the |G field) and the fi-
nal (quiet) system appears as a neutral. Such sys-
tem is very difficult for detection. The process is
known as “annihilation” but we see, that the matter
is not annihilated.

3.17.2 ps13s; triplet

This stateisusually activated when a positive
Beta particle from radioactive decay starts to oscil-
late with a normal electron system. The Beta par-
ticle is a quasiparticle wave, possessing a positive
charge of running EQs moving as a quantum wave.
This type of wave does not have strong boundary
conditions and behaves as an electrical charge. The
radial dimension of thiswaveisafunction of itsen-
ergy. Smaller energy means larger radius. When
the quasiparticle wave meets the electron system
their electrical fieldsinteract and cause multiplere-
peatabl e oscillations of the electron - positron sys-
tem. In a such process a lattice space pumping
effect occurs. During the pumping process the en-
ergy of the quasiparticle, that have been distributed
only among the positive EQs, redistributes be-
tween the positive and negative EQ'’. In result of
thisthe positive chargeisgradually consumed, and
itsenergy is converted to apumped CL space ener-

Copyright © 2001, by S. Sarg

(Corrected: Jan 2004)

gy. Thelatter finally isreleased as 3 gamma quants,
if the Beta particleenergy islessthan 511 keV. The
spectrum of 3 gamma emission is a continuous.
Here one question arises: Why 3 gamma quants are
emitted?

The explanation is the following:

The most energetic quantum wave isthe first
harmonic wave with energy of 511 keV. According
to the boundary conditions, only subharmonics
wave are possible. This condition put alimit on the
spectrum continuity in the vicinity of the first har-
monic. The quasiparticle wave, however, may pos-
ses any value of energy, that do not coincides with
the subharmonics quantum conditions. Such ener -
gy could not be presented as sum of two subhar -
monics quantum wave, but with sum of three
subharmonics.

The described above process is valid for a
vacuum or air conditions.When the electron isin
solids, the process is modified. The process known
as a positron thermalisation belongs to this catego-
ry. Itisdiscussed in 83.17.5

3.17.3 Ps 13s, - 233, state

This is a positronium, that terminates with
emission of a single photon at 243 nm. One of the
experimentsin which the above stateis activated is
provided by Mills, Berko and Canter, (1975).

The transition 13s, -23s, is obtained by the
following way. By moderation of Beta particles
from radioactive decay of 2Co, using MgO cov-
ered gold foil converter, slow positrons are ob-
tained. These positrons strike MgO covered gold
foil converter and then magnetically guided by 150
long curved solenoid strike a copper plate. The
copper plateisfaced to microwave cavity operating
around 8860 MHz. When the microwave (RF) is
off, aPswith alifetime of 1.1 msec decaysin 3
gamma photons. When it ison, emission at 243 nm
Is detected, in first, and after delay of 1.13 msec a
3 gamma photons are detected.

The explanation of the emission from the
point of view of BSM isafollowing:

The particles obtained by the moderation
process are hardware positrons.

Case A. The RF is off.

The slow positrons striking the copper plate
are combined to oscillating pair of normal electron
- free positron. The oscillation process invokes a
CL space pumping and the external E-fields of the
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normal electron and the positron become gradually
consumed. Approaching a neutral filed and pos-
sessing kinetic energy they escape easily from the
copper plate and enter in the cavity. Here they con-
tinue to oscillate with partialy lost energy. Their
residual energy is lower than 511 keV, because
part of it has been exhausted for escaping from the
copper plate. In result of this the oscillation proc-
ess terminates with emission of 3 gamma particles.
From the mass point of view, the final system is
consisted of two positrons inside of the electron
shell with total mass of 1.2 MeV. The positive E -
filed of the positron islocked in proximity with the
electron field and the particle appears as a neutral.
Such particle is very difficult for detection.

Case A. TheRFison.

After the escaping of the the electron - posi-
tron system from the copper plate, the process in
thiscaseisdifferent. Thefrequency of the RFfiled
issuitable for creation of curved loops for both the
electron and the positron. They are suitably folded
to match the interaction between the moving
charge and the magnetic field. In result of this, the
two carriers, having still enough energy, do not
move directly one to another. In this type of oscil-
lations, supported by the combination of magnetic
and RF field, quantum conditions are created, in
which the carriers adjust their velocitiesto 13.6 eV
and 3.4 eV. The quantum interaction with the CL
spaces alows them to stay longer in this condition.
In the same time, the started pumping process con-
tinuously degrade the quantum motion in theloops.
In some point, they lose the motion in the orbits.
Then the CL pumped energy escapes as a photon.
The both carriers, now become involved in direct
interaction. After 1.1 usec pumping time, the oscil-
lations are gradually suppressed and the accumu-
lated pumped energy is emitted as 3 gamma
photons. It is evident that the free positron does not
have enough energy to expel the internal positron
from the electron system. So the final system is
again neutral comprised of one electron shell and
two positronsinside.

The RF frequency 8625 MHz appears as an
optimal oscillation frequency of theloop. Theloop,
however may contain alarge number of serially
connected first harmonics quantum loops. This
is easily verified by the corresponding period and
the known velocity (corresponding to 13.6 eV and
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3.4 eV). When approaching this frequency the
emission efficiency for 243 nm photons is im-
proved. This curve, reference by the authors as a
lineisshownin Fig. 3.24.
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Fig. 3.24
The observed Lyman a signal S(open circles)
and logarithmic first-difference signal S¢ (solid
circles) as a function of microwave frequency
(Courtesy of A.P. Mills, Jr. et al.)

The subharmonic number of the carriers mo-
tion in the loops can be easily determined from the
photon energy. The only possible combination
iS:(13.6-3.4)/2=5.1¢eV . This means that:

- The quantum motion of the electron corre-
sponds to its first SPM harmonic - optimal con-
fined motion.

- The quantum motion of the free positron
satisfies ssimultaneously two quantum conditions:
a second subharmonic of SPM frequency, and a
forth subharmonic of its proper frequency. Thisis
one additional confirmation, that the proper
frequency of the free positron is twice the
Compton frequency. If it was 3v, as the internal
positron, such combination could not be possible.

- The lattice pumping effect is result of the
energy difference between the two quantum loops,
divided in two. The factor of two means 50%
pumping efficiency, according to the pumping effi-
ciency Eqg. (3.21.c):.n = m/(m,+m,) .

The axial velocity of the electron istwice the
axial velocity of the positron. This condition per-
haps makes the lattice pumping effect possible.
While the electron motion with optimal velocity is
most stable, the positron motion isadditionally sta-
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bilised by the mentioned above two quantum con-
ditions.

In the same experiment the dependence of the
“line” from the RF power isinvestigated for differ-
ent power levels. Theincrease of RF power causes
the fitted “line” to move up, giving an impression
of broadening, that the authors are not able to ex-
plain. According to BSM interpretation this effect
iscompletely logical. Its possible explanation isil-
lustrated by Fig. 3.25 where simple illustrations of
the single quantum loops are shown without pre-
tending of their exact shape. In the provided exper-
iment with RF frequency of 8625 MHz, the real
orbits lengths should be equal to multiple number
of first harmonics quantum loops.

e loop

———

EF frequency

8.625 GHz

Fig. 3.25
Possible loops of electron and positron mo-
tion
in 13, - 233, state

The RF field in TM010 microwave cavity is
parallel to theincident slow positron velocity. Then
the formed positroniums also could be prefferen-
tially aligned to thisfield. The RF frequency then
will determine the oscillation period of the loop.
The carrier velocity in the loop, is fixed by the
guantum motion conditions. Then the RF frequen-
cy can tune the length of the loop. Thereis acon-
stant magnetic field of 50 G, however, that fixesthe
curvature of the trace by the cyclotron radius. This
means, that theloop is properly aligned asshownin
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the Fig. Then the tuning of RF frequency could
make the curve length L shorter or larger, but one
optimal value of L should exists. This is the fre-
quency of 8.625 GHz. At this frequency the ampli-
tude of the A parameter of the lorenzian shape is
estimated at 11.4%. At different RF power levels of
0.13mW, 0.41 mW, and 2.0 mW., the correspond-
ing A parameter is5.3%, 12.3%, and 16.3%. The A
parameter isincreased, because the larger RF pow-
er inthe cavity ispossible to bias the week magnet-
ic field, increasing in such way the range of L
variation.

3.17.4 Ps “Positronium negativeion”

We put the name for this state in bracket, be-
cause, it is not a negative ion according to BSM.

According to the existed so far concept the
Ps state is a combination of one positron and two
electrons. Allen P. Mills, Jr. (1983) describes ex-
periment for measuring this state. A beam of 4-eV
positrons, produced by *8Co b source and W(110)
moderator is guided by a magnetic field to a thin
(50 A) carbon film supported on a NI grid. One of
10* positrons emerges from the film asaPs™ “ion”.
It is selected by another grid potential with adjust-
able distance and then is accelerated by high volt-
age (regulated between 1 to 4 kV.) The Ps- is
travelling toward Ge(Li) detector with velocity
close to the speed of light. This the “annihilation”
photons from decay of Ps- are detected as a blue
shifted, and are distinguished from those emitted
from the carbon film. The counting rate from this
photons increases, when the accelerating voltage is
increase. Plotsfor 1 kV and 4 kV are given.

The interpretation of the experimental data
according to BSM isthe following.

When the slow positrons from the moderator
pass through the carbon film, some of them, inter-
act with the electrons. Not al of the free positrons
are combined to a free positron - electron pair.
Some of the positrons may only activate the oscil-
lation of the internal positron of the electron sys-
tem, dissipating lot of obtained energy but do not
forming oscillating pairs. The activated in such
case electron system may obtain a strong oscilla-
tion mode (between the electron shell and the in-
ternal positron). In this case it may simultaneously
exhibit a negative charge (from the electron shell)
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and oscillating wave function with Compton fre-

guency. In the far external field it still behave as a

negative charge particle and is selected as such by

the system of grids and the accelerating electrical
field. During the acceleration the oscillating elec-
tron gets additional energy. So above some thresh-
old of the applied high voltageits total energy may
become larger than 511 MeV. Then the obtained
strong oscillations are able to pump the CL space
with energy enough for final emission of two gam-
ma photons at 511 keV. The Doppler shifted gam-
ma photons indicate that the end of the pumping
process, is occurred during the high speed motion
of the activated electron. In the end of the process
the electron systemisinitsnormal state. So we see,
that in thiscasethe emission of the511 keV pho-
ton is causes by a self oscillation of the electron
in a strong amplitude mode, if the oscillation
amplitude reach some threshold.
It is interesting to investigate the following

outcomes of this particular case:

- does the process terminates with emission
of two or one 511 keV gamma photon?

- if two gamma photons are emitted, are they
orthogonally polarized?

The experiment however is performed only
with one detector.

Summary:

» The 135, -23s; transition givesan indirect
confirmation, that the proper frequency of
thefree positron istwice the Compton fre-
quency.

» Thepumping energy between quantum
motionsin loopswith different velocitiesis
equal tothe carrier energy difference multi-
plied by the pumping efficiency.

3.17.5 Positron “thermalisation”

In the process, known as a“positron thermal-
isation”, athin plate of proper metal, cut at proper
crystal plane, is radiated by positive Beta particles
(quasiparticle wave). The quasiparticle wave enter
into oscillations with a free normal electron of the
plate, forming an oscillating system. The CL space
inside the sample, however, is different, than the
free space (vacuum). Due to the influence of the
proton’ sfields, and the motion of the formed oscil-
lating system in CL environment with stiffnessgra-

Copyright © 2001, by S. Sarg

(Corrected: Jan 2004)

dient, the interna positron may come out at much
smaller energy of the Betta particle. So atwo pos-
sibilities may exist in this case:

- the thermalised beam is comprised of parti-
cle positrons

- the thermalised beam include both: particle
positrons, and quasiparticle waves with reduced
energies.

It is more logical to expect the first option,
but the second one is not excluded.
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