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Chapter 4. Superconductive state of the 
matter. 

4.0 CL space inside a solid body
The CL space of astronomical bodies and

small bodies are discussed in Chapter 10. Here only
some features of CL space inside a small body
could be mentioned. Any solid body placed in the
Earth gravitational field is immersed in the CL
space of the Earth, which is in fact a CL space of
the Milky way galaxy, modulated by the Earth
gravitational field (this issue is discussed in Chap-
ters 10 and 12).  The atomic matter of the solid
body may partially distort the Earth CL space in-
side  of the solid body volume. The distortion is
very weak, because at the level of the elementary
particles the Newtonian type of gravitational field
is quite smaller in comparison to the IG field be-
tween the nodes of the CL space structure.

The distortion in fact depends on the intrin-
sic matter density included in the volume of the sol-
id body. The intrinsic matter density can be
expressed by the number of prisms included in
some unite volume. If using the parameters of the
electron’s structure (unveiled in Chapter 3) the
above highlighted parameters are defined. In the
same time the electron structure as a single coil of
SOHS could be easily referenced to any helical
structure, which is embedded in the elementary
particles.  The protons and neutrons differ only by
their overall shape, because they have one and a
same internal structures (comprised of helical
structures). It is shown in Chapter 8 (and in the At-
las of Atomic Nuclear structures) that the protons
and neutrons in the atomic nuclei are arrange in
strict order, while the  valence protons have some
limited freedom of their spatial positions. It is evi-
dent that in a microscale range the density of the in-
trinsic matter exhibits a complex spatial gradient
even inside a homogeneous solid body. Since the
intrinsic matter density depends on the chosen
scale, we may formulate the following scale rang-
es:

Case (1): a scale in order of proton core en-
velope thickness equal to:  (A) 

Case (2): a scale in order of the proton
width: 

 (A)

Case (3): a scale in order of average inter-
nuclear distance (1 to 3) (A)

The scale parameters in cases (1) and (2)
are determined in Chapter 6. 

The average internuclear distance in case
(3) depends on number of factors: a pure metal, an
alloy or a chemical composition.

The superconductivity is known as a first
and a second type.
• The pure first type of superconductivity appears 

in solids of metals
• The second type of superconductivity appears 

in solids of allows and chemical compositions
The properties of both type superconduc-

tivity are well known. We will try to provide some
physical explanation from a BSM point of view of
the matter in a CL space environment. 

The atoms in metals of solid aggregation
state are closer than the nonmetals in a same state.
So the metals will exhibit a stronger first type CL
space modulation. The specific gravity of the ele-
ment in a solid state could serve as a reference pa-
rameter of this type of modulation. In the same
time solids with a same or close specific gravity
may have different arrangement of the atoms in the
crystal, for example: the structure of the metals and
the alloys. While the atoms in the metal crystal are
more uniformly spatially distributed, those in the
alloys are not. This provides conditions for a
stronger IG gradient inside the solid body, which
means a larger modulation of the CL space (or CL
space spatial non uniformity).

Now if associating the both types of super-
conductivity with the Earth CL space modulation
inside the solid body we see that:

- The CL space modulation in case (1) is not
dependent on the particular element, so this type of
modulation could be excluded from the supercon-
ductivity considerations.

- The CL space modulation in case (2) may
depend of the number of the hadrons (proton or
neutron) in the nucleus and their arrangement.
Consequently the case (2) may determine which
pure metal may exhibit a first type supercon-
ductivity.

- The CL space modulation in case (3) de-
pends on the nonuniformity in the crystal structure
configuration. The nonuniformity is smaller for
pure metals and larger for alloys, doped metals or
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chemical compositions. Consequently the case (3)
might be involved in the conditions for second
type superconductivity.

The proof of the above made conclusions will
become apparent from the analysis presented in
this chapter.

4.1. Normal and superconductive operational 
mode of CL node.

The superconductivity, according to BSM, is
a state of the solid matter, directly related to the
ZPE of the internal CL space.  When the conductor
is cooled to a very low temperature, the CL do-
mains inside its volume may get lower ZPE than
the normal one. This condition is dependable on the
internal structure of the material. When approach-
ing the absolute zero we see that different metals
have different superconductive temperature. Some
metals as gold, silver, copper, do not exhibit super-
conductivity. The nonuniformity of CL space in the
solids means that CL structure exhibits stiffness
gradients.

The CL nodes of domains with different stiff-
ness have different value of their return forces and
consequently different energy wells. This differ-
ence affects also their proper resonance frequency.
At normal temperature all domains have a normal
ZPE

When the body temperature drops to a very
low level the domains with a lower stiffness get a
lower value of their ZPE in comparison to domains
with a higher stiffness. This is much more relevant
for the second type or high temperature supercon-
ductors, for which the structural mass gradient is
much larger, than for the pure metals. The stiffness
is very sensitive to the node distance. Small differ-
ences in the node distance (or node density) leads
to larger stiffness differences, due to the inverse cu-
bic dependence of the IG forces between the nodes. 

The return force dependence and the energy
diagram of the CL node, was presented in Chapter
2, but the superconductive (SC) state was not dis-
cussed in details. Here we present the same dia-
gram, but emphasizing on the SC state.

                     Fig. 4.5
 a. Node return forces and energy diagram in function
 of displacement, b.  2 D projection of the node cycle

 Figure 4.5 shows the return forces and the
energy diagram as a function of the node displace-
ment with identification of the working energy
ranges for a normal and a SC state. The 2D projec-
tion of the resonance cycle is given in a different
scale in a box below the diagram. The node dis-
placement corresponding to the bumps of the SPM
quasisphere is denoted as rmax, and this corre-
sponding to the dimples - by rmin.

The full well capacity of the node energy is
artificially separated into energy well 1 and energy
well 2. The energy well 1 is spatially allocated
around xyz axes, while the energy well 2 is allocat-

a.

b.
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ed around abcd axes. The point A0 is the lowest
point of the energy well 1. The energy  scale shown
in the right side, is not linear, but showing only the
order of the energy levels. The diagram indicates
the displacements, corresponding to the rmax and
rmin of the node trace. The radius rmax is deter-
mined by the curve 1, while rmin - by curve 2. We
see that both radii are dependent on the level of
ZPE down to the critical point Ao, which corre-
sponds to the critical energy level Ec1. The level
Ec2 corresponds to a normal ZPE. The radius rmax
is always defined by the curve 1 for the case of nor-
mal and subnormal energy. The same rule, howev-
er, is not valid for rmin. When the ZPE  begins to
decrease from Ec2, the radius rmin initially is deter-
mined by the sector of the curve 2 lying in the right
side of p. A0.  However, when the energy ap-
proaches Ec1, the smaller radius may flip to the left
side of curve 1. This flipping may occur as a result
of an external field influence. 

The flipping of rmin at a very low energy
level may flip the phase of the SPM frequency of
the affected domain by a value of . Then the
magnetic filed of this domain could act repul-
sively to the external magnetic field.

The mentioned effect has direct impact on the
external magnetic filed, which tries to penetrate the
sample. For rmin operated in the left side of p. A0,
the conductor material appears diamagnetic, while
in the right side of A0 it may still appear paramag-
netic.

In order to distinguish the node operation of
this two cases related with rmin, we denote them as
a DM (diamagnetic)  and  PM (paramagnetic) type
of operation. Therefore, p. A0 separates the dia-
gram in two zones: a DM zone and a PM zone.

The separation of the node operation in a nor-
mal and a superconductor state is a function of the
node energy. In fact the normal state should corre-
spond only to one value of the energy level denoted
as Ec2. The SC state, however, does not begin just
below Ec2, but is closer to Ec1. So between the nor-
mal and the SC state, some transition zone with fi-
nite energy range should exist. The width of this
zone is dependable to some extent on the conductor
crystal structure and the atomic mass gradient.

The diamagnetic state is a result of not stabi-
lised resonance frequency. In such case both, the
NRM and the SPM vectors are affected. The mag-

netic filed is very severe disturbed, because it de-
pends on the SPM phase synchronization.

Let to see how the trace shape changes when
the ZPE decreases. When approaching SC energy
point, the decrease of rmin becomes faster than the
rmax. This changes the shape of the trace from 3 to
4 as shown in the Fig. 4.5. In the same time the
NRM and SPM quasispheres are also affected.
Their bumps become sharper. The size of the EQ,
however, appears restricted by the lower ZPE. As
a result of this change, the electrical field around
the FOHS may appear stronger, but localised in a
smaller space. 

Let to see the SPM behaviour in a CL do-
main, when the ZPE of this domain decreases. At
Ec2 level the SPM frequency is stabilised by the
own internal resonance frequency stabilization
mechanism. Below this point, this mechanism is
lost, but the stabilization could be supported by the
neighbouring or the external magnetic field, which
is still able to penetrate.  This becomes apparent in
the FQHE experiments, where an induced quantum
effect take place (BSM interpretation). The point
Ec1 corresponds to a bottom critical energy level.
Above this level the spatial rotation of the SPM
vector covers the solid angle of . Below the Ec2
level, however, the SPM vector is not able to
cover the full angle of  .

The following conclusion could be made:
• The point A0 corresponding to level Ec1 is 

very characteristic point for switching the 
SPM vector behaviour. 

The signature of the characteristic point Ao is
identified in the following later analysis of the
QHE (Quantum Hall Effect) experiments. It ap-
pears at temperature very close to the absolute zero
- about 50 mK. 

The SC state is above the critical energy level
Ec1. In order to explain the superconductivity we
must consider the CL domains located near the sur-
face and operated in a PM mode. Only in a such
mode the SC carrier could interact with the external
CL space and create a strong magnetic filed. Then
the following question arises: What kind of inter-
action is able to keep the located near the sur-
face CL domains in PM type of operation? The
answer is: The interaction of the strong magnet-
ic field outside of the superconductor (where the

π
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4π
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SPM vector is stabilised) with the oscillating SC
carriers. The magnetic field partially penetrates
below the surface of the superconductor, where
PM zone is created. This is the penetration
depth of the superconductor.

The SC carriers are modified versions of
the electron system. They are discussed in §4.2.

The penetration depth has an exponential
shape, because it is  formed by a temperature gra-
dient. The electron and its modified SC configura-
tion, has own self energy in their internal RL(T). So
they are automatically attracted in the surface re-
gion, where they can exhibit a quantum motion.
They are able to keep their normal level of self en-
ergy by participating in a quantum motion under
control of the external stabilised SPM frequency.
The external magnetic field could not pass through
the bulk region of the semiconductor, occupied
mostly by domains operated in a DM mode. The
SPM vectors of these domains (whose frequency is
not stabilized) “bounce” the penetrating magnetic
lines. This is the Messner effect.  If applying, how-
ever, external filed above some critical level, the
SC state is destroyed. In this case the CL nodes,
which have operated in the DM zone, forcibly
are pressed to operate in the PM zone. The me-
diator in this interaction is performed by the SC
carriers. Their are able to sense the external
SMP vector by their oscillations and their af-
fected motion can interact stronger with the CL
domains. If the external field is removed the oppo-
site transition takes place, because the bulk of the
superconductor has a lower ZPE.

Let find out what is the sign of the frequency
change, when decreasing the normal ZPE and ap-
proaching the ESC energy point (see Fig. 4.5),
while regarding the CL node as an oscillator, pos-
sessing a free running frequency range and stabi-
lized by the mechanism discussed in §2.9.3. It is
well known that any stabilised oscillator has a
small range of stabilized frequency, characterised
by a frequency slop (frequency change from dis-
turbing factors). Outside of this range, the slope is
increasing, but without discontinuity. For the oscil-
lating CL node in the range of ZPE between Ec1
and Ec2, there is no reason the first derivative of
that slope to change its sign (i. e. there is not dis-
continuity). Then let find only the sign of the first
derivative of this slop. We may obtain this by ana-

lysing the thermal properties of the optical materi-
als. When the optical glasses become cooled, their
refractive index exhibits a small change. This ef-
fect according to BSM is a result of a slight change
of the of the SPM frequency in the CL space do-
main inside the glass.  In fact it is affected by a
slight reduction of the ZPE of the internal CL
space. It is well known, that the 95% of the glasses
have a positive change of their refractive index
with the temperature. We have to take into account
that one additional physical parameter also changes
with the temperature - the thermal expansion. The
latter change is related with the change of distance
between atoms, but we are not sure, could the lat-
tice stiffness be influenced by this. For this reason
we must check the temperature trend of the refrac-
tive index normalised to the linear expansion coef-
ficient.

                                            (4.1)
                     where: n - is the refractive index,

 - is the thermal expansion coefficient,  -
is the differential change of the refractive index
from the temperature

The parameters of 20 glasses were used (the
results are not shown here as they can be easily ver-
ified). The function (4.7) was plotted and fitted to a
robust line. If one and a same wavelength is used,
the ratio  appears very close - mostly in the
range 0.30 - 0.31 for 95% of the glasses for the vis-
ible range. When including the IR glasses the range
becomes larger. In both case, however, the fitted
line is  well above the zero. The glasses showing
negative  gives only 6% contribution, but
5.2% belong to NaCl only. Then, we may conclude
with sure, that when the temperature goes down,
the corrected refractive index also goes down.

From both options we get one and a same re-
sult: The change of the refractive index, estimat-
ed by the parameters of the external CL space,
has the same sign as the temperate change.

As a reference point of the analysis we will
consider, the unchanged node distance, when the
ZPE is decreased.  This automatically means, that
the Planck’ constant is unchanged according to
the mass equation. If this was not true, then we will
observe a change of a body mass, due to a change
of the mass of the particles, but such effect has nev-
er been observed.

n/αT f dn
dT
------ 

 =

αT dn/dT ( )

n/αT

n/αT
Copyright © 2001, by S. Sarg                                                                                                                                                                4-4



BSM Chapter 4.   Superconductive state of the matter
 The light velocity as a quantum wave param-
eter, make a sense only if the quantum conditions
are still available, i.e. both, the NRM and the SPM
frequencies are stabilised. The change of the re-
fractive index means, a change of the light velocity
in the glass. When the glass refractive index goes
down, the light velocity, estimated by the external
space parameters is increased. Considering the
quantum conditions for the first SPM harmonic, the
SPM wavelength , estimated by external
space parameters will be increased. If estimated by
the number of node distances it will also appear
stretched. Then from the energy conservation prin-
ciple, it follows, that the photon frequency should
be decreased because . The Plank’s
constant is unchanged, consequently the SPM fre-
quency should be changed.  Then, by using up (/|\)
and down (\|/) arrows, we may express the signs of
the CL space parameters changes as a result of the
temperature (T) change. 

T \|/    n*  \|/     c*  /|\      /|\       \|/    (4.2)
where: the parameter in the glass CL space is

denoted  by *.
 The same photon energy in the glass will be

stretched in a range, so it will contain a larger
number of nodes. The stretched wavelength of the
first harmonic will comply to the quantum parame-
ters of CL space inside the glass volume. In fact the
stretching is a 3 dimensional. But this could be re-
garded as a wavelength shift, caused by the
changed refractive index, according to the classical
interpretation of this phenomenon.

It might be useful to know the direction of the
NRM vector frequency change from the tempera-
ture. But then a question arises: Is the NRQ value
unchanged in respect to the normal state? The an-
swer of this question is not simple. But if we con-
sider, that the energies in both energy wells (well 1
and well 2) are reduced proportionally, then we
may accept that NRQ parameter is not affected.
Then the change of the NRM frequency will be in
the same direction as the SPM frequency change.
The same  dependence of the NRM frequency from
the temperature was also accepted in the node dy-
namics analysis in Chapter 1, based on logical con-
siderations. This dependence is in agreement, with
the accepted model of the conical pendulum. Con-
sequently, the conical pendulum model is valid

for the CL node operating in a PM zone, but not
in a DM zone.

In the further analysis we will rely predomi-
nantly  on the more confidently determined rela-
tions given by Eq. (4.2), allowing to infer the the
SPM frequency and the photon wavelength de-
pendence on the temperature. However, when con-
ditions for SPM frequency stabilization appear, we
may consider with that the NRM frequency is also
stabilised. In SC state such conditions are possible.
In the following later analysis of QHE experiments
it will be shown that such conditions are actively
invoked.

The  temperature dependence given by Eq.
(4.2) is valid for a normal mode of operation. From
the QHE we will see, that the feedback leading to
the NRM frequency stabilization is a negative. It is
the same type feedback operated in a normal state.
Consequently, the feedback leading to a NRM fre-
quency stabilization is of negative type and corre-
sponds to a PM zone, the zone at the left side of
point A0 (Fig. 4.5.a). The slop sign is obviously re-
lated with the sign of the feedback, which provides
the NRM frequency stabilization. The slop of
curve 2 from the left side of A0 changes the sign.
Then the feedback for the nodes operated in the
DM zone will become positive.  This conclusion is
supported by the results from the fractional quan-
tum Hall experiments.

 4.2 The electron system configurations in 
superconductive environments

4.2.1 Electron system in SC state environment. 
Carriers in SC state of the matter.

The very distinctive features of the electron
system from the proton and neutron is that it is
composed of three separate helical structures and
possesses internal energy, which is kept in its inter-
nal rectangular lattices. We may expect, that in do-
mains of normal ZPE, the system always oscillates
with small amplitudes. The oscillations create a
small alternative magnetic field. This field is di-
rectly related to the quantum motion of the elec-
tron. The same field, also, assures the symmetrical
oscillations of the internal structures in respect to
the external one.  In other words, this field keeps
the internal positron inside the electron’s shell.
Then we may expect that if the  magnetic field is

λSPM∗

E hc/λ hν= =

λSPM∗ νSPM∗
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disturbed as a result of abnormal CL space condi-
tions, the electron system could be reconfigured.
The most probable reconfiguration is the exiting of
the positron out of the electron shell. In the DM
zone of SC state, however, the electrical field is
stronger and the exiting positron may attach itself
externally to the electron shell.

Another mechanism may also favour the ex-
iting of the positron. The normal electron system
contains self energy in its internal RL(T)’s. This
energy keeps a proper frequencies of the electron
system (mostly the first one which is equal to the
Compton’s frequency) for a finite time. At very
low temperature of the superconductor material,
the ZPE gradients between domains with different
node density are increased. Then small differences
between the SPM frequencies of different neigh-
bouring domain may take place. If the moving elec-
tron is forced to pass through such domains (by
external fields) it may loose the quantum synchro-
nization with the SPM vectors of these domains.
Then a low frequency phase difference may occur
between the  electron proper oscillations and the
SPM frequencies of these domains. At large phase
biasing, the positron may occur outside of the elec-
tron shell. The change of the proper frequency of
the positron system from small to large amplitudes
(from  to   respectively) also may contribute
to this effect. The process may happens, when the
electron is in domains of SC state but operated in
PM zone. The conditions for such phase biasing
leading to exiting of the positron from electron sys-
tem  are shown in Fig.  9.6

                           Fig. 4.6
  Phase biasing between the electron’s oscillations
 and the SPM frequency of a CL node domain with a
 lower ZPE  leading to exiting of the positron out of the
electron’s shell (of the electron’s helical structure)

The black horizontal line shows the central
position of the oscillating positron. We see, that
there is number of points at which the positron ap-

pears almost outside of the electron’s shell. The
simulation was provided, by using two close fre-
quencies, one stable for the electron proper fre-
quency and another one with slightly changing
sweeping factor, simulating a motion in a zone a
CL node proper resonance frequency gradient.

The superconductors of first type are usually
metals. However, heavy metals like gold, silver
and copper do not exhibit superconductivity. The
reason for this is that their crystal structure is pretty
uniform, and they have a larger hadron (protons
and neutrons) density, which means a larger Intrin-
sic Matter density. In such conditions, ZPE gradi-
ent is relatively small. From the other side, some
compounds of heavy and not heavy metals may
have CL domains with a larger difference between
their stiffness. Then such domains may get a larger
ZPE gradient in a comparatively high (in respect to
the low temperature superconductivity) tempera-
ture. In this conditions, some domains might be in
a normal state, while others in a SC state. In this
case, the superconductor will have a channel struc-
ture. As a result of this, the resistance does not fall
so sharply. The Messner effect, however could
work even at this conditions, because the magnetic
lines need closed paths in order to pass through. A
II type superconductors are characterised by such
features.

Fig. 4.7.a, and b. show respectively the con-
figuration of the SC electron and the proximity
locked external E-field.

Fig. 4.7. Superconducting electron system and the ex-
ternal proximity locked field. A small gap (not shown) exists
between both structures (see the considerations in §6.4.3)

3νc 32νc
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The SC electron distinctive features from
the normal electron are the following:

a. The external electrical field is locked in
a proximity. In the far field the SC electron ap-
pears as a neutral particle. 

b. The negative charge is hidden in the in-
ternal region of the twisted mono rectangular lat-
tice of the electron shell. It has openings to the CL
space only from both ends. 

c. The only oscillation part of the SC electron
is the negative central core

When analysing the FQHE experiments we
will see, how the SC electron gives its signature as
fractional charges of 1/3, 2/3, 4/3, 5/3. The conclu-
sion that the charge appears hidden in the far field
is supported also by some experimental observa-
tions. J.D.F. Franklin et al. (1995), for example,
surprisingly discover in their QHE experiment that,
the quasiparticles can tunnel through a barrier.

The intrinsic mass of the positron with its in-
ternal lattice appears hidden, when it is inside the
electron shell, because the lack of coupling be-
tween their IG(CP) lattices, due to the oscillations.
Once the positron is external and in a proximity to
the electron shell, the motion is absent and the
IG(CP) forces are active. They force the E-field
lines to get closer and to be connected in proximity.
Despite the different external shells radii, the E-
fields of the electron and positron are exactly
equivalent, because the angular density of their
field lines is equivalent. (The Intrinsic Matter dif-
ference between the right and left handed prisms is
compensated by the CL space). In this conditions
the SC electron appears as a neutral in the far field.
The hole inside the electron RL(T), however is
open and available for the CL nodes. As a result of
this, the existing before the reconfiguration neg-
ative charge is transferred to this hole. There are
few reasons supporting this conclusion:

The first one comes from the analysis of the
experimental behaviour of the electron during the
refurbishing process. If the charge happens to dis-
appear, the CL space should react with an emission
of a  as in the case of proton - neutron conversion
(in this case the β  particle according to the BSM is
a virtual particle - a reaction of the CL space). Ef-
fect of β  particle emission, however is not detect-
ed. This confirms the presented above conclusion. 

 The second reason comes from the fact that
the SC electron is able to be controlled by electrical
potential in the superconductor, and it creates mag-
netic field outside of the superconductor. Conse-
quently it still possesses a guiding feature from the
internal negative charge, which is open to the exter-
nal E-field in both sides of the hole.

In the junction between the superconductor
and conductor, the SC electron undergoes refur-
bishing to a normal electron. This is the reason for
the appearance of the Josephson resistance. If
the charge was missing, the CL space should react
as in the neutron - proton conversion, by emission
of  a  β particle. Such effect is not observed. 

There is a direct observational evidence that
the SC electron exhibits a tunnelling effect, passing
through a barrier (see quasiparticle tunnelling
through a barrier observed by J .D. F. Franklin et
all., 1995). 

The motion behaviour of the SC electron is
different than the normal one. Its interaction with
the atoms is greatly reduced. In the same time it
still has two important features assuring its quan-
tum type of motion: The first one is the guiding fea-
ture of the hidden negative charge, open in both
ends of the electron shell. The second one is the os-
cillation feature of the central core. The second fea-
ture assures the quantum motion of the whole
system, interacting with the magnetic field of the
external space. In SC state, the SC electron natural-
ly prefers to moves in zones near the surface of the
superconductor, where the central core interacts
with the external magnetic field, which possesses a
normal ZPE. We may expect, that the ZPE of this
zone of superconductor falls exponentially from
the surface to the bulk. Such zone really exists and
it is well known under name a penetration depth.
The internal energy of the positron RL(T) is pre-
served and serves to support the oscillation of the
central core. During a full cycle of the oscillation
the part of the end of the negative core moves in-
side the electron shell hole, occupied now by the
negative charge (see Fig. 4.7 (a)) Therefore, the
conditions for the central core motion are similar as
in the normal electron. Then we may expect, that
the proper frequency of SC electron is the same
as the positron-core system in the normal elec-
tron. We will see in the next paragraphs, that this
is confirmed by the fractional charge experiments.
Copyright © 2001, by S. Sarg                                                                                                                                                                4-7



BSM Chapter 4.   Superconductive state of the matter
The SC electron is able to keep its integrity
not only in domains in SC state. It can be temporal-
ly stable in domains possessing a normal ZPE.
Then the motion of the SC electron in a normal
ZPE domain will exhibit some resistance, which
has to be overcame before the SC electron converts
back to a normal electron. This conclusion is con-
firmed by the experimental data (BSM interpreta-
tion). Figure 4.8. shows the temperature
dependence of the resistivity of II type supercon-
ductor Ba-La-Cu-O for different concentrations of
Ba and La.

                            Fig. 4.8
          Temperature dependence of the resistivity
for II type superconductor based on  Ba-La-Cu-O

The temperature scale division in ranges A,
B, C is made by BSM interpretation. The range A
provides temperature conditions for the CL do-
mains in SC energy state. In the range B, the CL
domains approach the normal ZPE level, but the
conversion of the SC electron to a normal one is not
completed. The SC electrons may temporally sur-
vive, when passing domains with normal ZPE.
However, their oscillation properties are not opti-
mised for these zones, so they may feel increased
resistance.  In the same time the abundance of the
normal electron is small, because the SC electron is
part of the total electron gas. As a result of this, the
measured resistance arises. For some concentra-

tions of Ba and La, the domains with a near critical
ZPE exist at higher temperature and some SC elec-
trons are still attracted to them.  Evidently the bal-
ance between the normal domains,  the SC domains
and the normal electrons leads to a smooth resist-
ance change in the range B. In the temperature
range C, all CL domains are with a normal ZPE.
The resistance of the SC electron for the back con-
version to a normal electron comes from the
IG(CP) forces between the degenerated electron
and the positron. These forces could be compensat-
ed only by the increase of ZPE of the CL nodes.
Then more and more CL domains operate in a PM
zone. The increased ZPE also removes the restric-
tion on the eccentricity of the EQ quasispheres. In
such conditions the electrical and magnetic interac-
tions can overcome the IG(CP) forces. All this fac-
tors provide a hysteresis effect in the direction of
SC to normal electron conversion process. The
hysteresis effect is an important factor, keeping the
stability of the SC electron in the SC state. Without
such effect the surviving of the SC electron, espe-
cially for the II type of superconductors would be a
serious problem.
• The integrity and stability of the SC electron 

in SC state of the matter is kept by an hys-
teresis effect. 

The carriers of the  SC state are not only sin-
gle SC electrons. The BSM analysis of the Frac-
tional Quantum Hall experiments (FQHE) unveils
the signatures of another configurations of the elec-
tron system: - stacked SC electrons. A configura-
tion of two stacked SC electrons is shown in Fig
4.8.A.

                          Fig. 4.8.A
  Two SC electrons stacked together. The  small 
gaps between the stacked helical structures are not
 shown ,  (see the considerations in §6.4.3)
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The stacked SC system also appears as exter-
nally neutral. But it has one distinctive feature in
comparison to the single SC electron. One of the
positrons is in the middle of the stack. The both
ends of its internal core oscillates in domains of
hidden electrical charges. In the single SC electron,
only one end of the core oscillates in a domain of  a
hidden electrical charge. The core and the hidden
charges are negative, and they repel the core back.
One of the hidden negative charges appears be-
tween the two central cores. For this reason, the
two cores oscillate synchronously and the system
exhibits one proper frequency. However this fre-
quency is different than the single SC electron, due
to the different oscillation conditions of the cores.
In a similar way three or more stacked SC electrons
are possible. They have different proper frequen-
cies which signature appears in the BSM analysis
of the FQHE experiments. In a system of n stacked
SC electrons, (n-1) positrons are between electron
shells. So we may expect that the proper frequency
of the stacked SC electron changes with n.

The single and stacked SC electrons are the
carriers in the superconductivity. One question
arises: How the SC electron creates so strong exter-
nal magnetic field, while its charge is hidden? The
answer is:

When the particle is in motion, the proximity
locked field of the SC electron is able to generate a
magnetic field. This is similar as the neutron case,
where the E-filed from its helical structures is
locked by the IG forces, but it still exhibits a mag-
netic moment, when  it is in confined motion. The
SC electron is attracted in the zone of penetration
depth, but this spatial zone has a ZPE gradient. So
the SPM frequency (and respectively SPM wave-
length) also has a gradient in this zone. Then the
boundary quantum conditions of the moving SC
electron become not symmetrical, but exhibiting a
distorted shape. Fig. 4.9. shows a section of the su-
perconductor near the surface illustrating the
boundary conditions of the SC electron for three
consecutive subharmonic numbers, n, n+1 and
n+2.  The ZPE SPM frequency and SPM wave-

length are also shown as function of the distance x
from the surface.  

                               Fig. 4.9
Boundary conditions of the SC electron in the 
zone of penetration depth. The CL parameters 
of the superconductor are denoted with *.

The affected CL parameters in SC state
are denoted by a “*”. We see, that the boundary
curves have shapes different than circle due to the
ZPE gradient.

The SPM wavelength of in a low ZPE zones
is  larger than in a normal ZPE zones. The SC elec-
tron quantum motion tends to follow the SMP fre-
quency of the local domains through which it
moves. Simultaneously its oscillations are influ-
enced by the common magnetic field via direct fre-
quency synchronization. This means the SC
carriers with different subharmonic quantum ve-
locity will have different density distribution in the
section of the superconductor. Another factor influ-
encing this distribution is the temperature gradient.

If the SC electron following the created quan-
tum conditions tries to move with its optimal con-
fined velocity, its peripheral velocity may reach the
limit of the light velocity for this domain (estimat-
ed by the number of passed CL nodes per one prop-
er cycle). Therefore, the increasing of . is
constrained. This is apparent from QHE experi-
ments.

The oscillational motion of the SC electrons
interacts with the SPM vectors of the low energy

λSPM*
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CL nodes. In a SC state of the matter  the “hun-
gry” for energy CL domains do not provide re-
sistance but a complimentary behaviour
allowing the SC electron to move almost without
resistance.

The magnetic field of the moving stacked SC
electron is a result of the proximity locked external
fields between the stacked electron and positron
shells. These fields become unlocked only during
the quantum screw-like motion (in a similar way as
the moving  neutron).

Let assuming that some of the induced mag-
netic lines overpass the surface of the superconduc-
tor an pass through the external space (air or
vacuum) where CL node SPM frequency is stabi-
lized. In this zone conditions for zero point waves
and of magnetic protodomains always exists. Sim-
ilar conditions does not exist inside the supercon-
ductor or they are very diminished. Then the
magnetic field from the moving SC electrons will
get natural tendency to escape the SC zone and to
appear in the outside CL space. At the same time,
this tendency will drag the SC charges closer to the
surface of the superconductor.

Having in mind that the resistance is very
low, the driving voltage is also quite low. This
means that the SC electrons may also operate at
large subharmonic numbers. In this case their  mag-
netic radius is larger (as for the normal electron dis-
cussed in Chapter 2). So it is quite reasonable to
expect that the SC electrons have common phase
synchronization. This feature may allow the com-
mon magnetic field to escape outside of the volume
of the superconductor.

After the acquaintance with the nuclear atom-
ic structure (Chapter 8), we will see, that the “pos-
itive holes” carriers, which are specific for the
semiconductors, can not be carriers in the super-
conducting state. Only the single SC electrons
and their stacked versions could be the existed
charge  carriers of the superconductor. This
conclusion will become evident, after the analy-
sis of the carriers in the Integer and the Frac-
tional Quantum Hall effect. This is done in the
next two paragraphs.

4.2.2 Proper frequencies of the stacked SC elec-
trons.

In the previous paragraph the reason for the
stacked SC electrons proper frequency change was
discussed. Here some theoretical explanation of
this change will be presented. It was mentioned,
that the proper frequency of the stacked SC elec-
tron could be decreased due to the appearance
of additional environment for the central core,
which oscillates in a spatial domain containing
the hidden negative charge (inside of the degen-
erated electron shell). We will try to provide some
simplified theoretical explanation of such effect.

The stacked electrons may have optimal or
subharmonic quantum motion. Let considering
only the optimal confined motion (with a first har-
monic quantum velocity) of set of SC electrons
with stack numbers of 1, 2, 3, 4, 5. Let accepting
that their proper frequency as a result of the above
discussed effect are respectively:

 1/3, 1/5, 1/7, 1/9, 1/11  
The above set of fraction numbers in fact

appears as a filling factor in the FQHE experi-
ments.

In order to prove the above made conclusion
we will provide some analysis of FQHE experi-
ments from the BSM pint of view.

Table 4.1 shows the correspondence between
the parameters of the admitted association between
the filling factors (well known parameter in FQHE)
and the set of the proper frequencies of the stacked
SC electrons.

                                                            Table 4.1
-------------------------------------------------------------------------
     filling factor        carrier type                          
-------------------------------------------------------------------------

1/3   - single SC electron                              3
1/5  - two stacked SC electrons                   5
1/7  - three stacked SC electrons                 7
1/9  - four stacked SC electrons                   9
1/11 - five stacked SC electrons                  11

-------------------------------------------------------------------------
where:  is the proper frequency of the stacked SC

electron and  is the SPM frequency of the CL node with
a normal ZPE.

The negative central core of any consecutive
combination of stacked SC electron will get an ad-
ditional pushing force from the interaction with the
hidden negative charge. This will decrease the os-

νpr/νSPM

νpr
νSPM
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cillation period, which means an increase of the
proper frequency. It is reasonable to expect that
when the number of the stacked electron in-
creases,  the changed proper frequency of the
system will approach a natural exponential
shape. Our task is to check this hypothesis.

From table 4.1 we see that the filling factor
set appears as a period of expected frequencies.
Then we may estimate the proper frequency change
by the period change. The equation of the proper
period dependence on the stack number can be
written as:

                                       (4.3)

where: i - is the consecutive stack number, x
- is the change of the proper period

Then the change of the proper period is:

                                       (4.4)

The grow of  from  is initially larger, but
tends to approach a value of 1/3. This is visible
from the plot of Eq.  (4.4) in Fig. 4.9.A. Two other
functions are plotted also, one exponential, given
by Eq. (4.5), and one formed of series, given by Eq.
(4.6). They both are normalised to a value of 1/3.

                                 (4.5)

where: a = 3

                                      (4.6)
. 

                                Fig. 4.9.A
       The proper period change of the stacked SC 
         electrons in function of the stack number

The factor   in Eq. (4.5) can be consid-
ered as a ratio between the proper frequency of the
SC electron and the SPM frequency. 

We see that the trend of the proper frequency
change is less closer to exponential, but much clos-
er to the series given by Eq. (4.6). These series, by
the way, have a sequence similar as the subharmon-
ic set 1, 4, 9, 16, valid for a quantum motion with
boundary condition of MQ’s. Perhaps two factors
may influence the proper frequency change: - the
changed conditions for the core motion and the
new magnetic moment of the stacked structures.
From the comparison of electron to muon parame-
ters (having in mind that the electron is a single coil
structure, while muon is a multi-coil) we know,
that the magnetic moment is inverse proportional to
the number of coils. 

It is evident that the set 1/3, 1/5, 1/7 exhibits
a close trend as the two shown functions. However,
one question arises: How the changed proper fre-
quency is possible to take exactly  such values with
a great accuracy (apparent in the experiments).
This answer may be provided by the wavefunction
which Loghline used for a quasiparticle explana-
tion. This wavefunction obviously is related with
some optimum energy balance in quantum space.
Then additionally to the above explanation, some
physical factor still should exist, allowing the prop-
er frequencies to obtain the exact set values. The
possible explanation is the following:

It was discussed in Chapter 2, that the physi-
cal dimensions of the FOHS is controlled by the
balance of the IG forces given by Eq. (2.8). But
small deviation of this balance may affect much
stronger the second order helicity and radius. The
electron system structures are open FOHS’s, whose
shape is kept by their internal RL(T). The E-filed of
the structure is created by this RL(T). So when the
external E-filed is affected due to a lower ZPE, the
RL(T) will feel that change. Then it may correct the
internal node spacing, that could lead to a small
balance change of forces according to Eq. (2.8). As
a result of this, the helical step  and the radius Rc
may undergo a small change, which however is
enough to reach the IG forces balance and respec-
tively the exact fractional number corresponding to
the observed filling factor. 
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4.3 Integer and Fractional quantum Hall effect, 
according to the existing so far theories.

  The experimental setup and the measured
parameters in the integer and the fractional QHE
are illustrated by Fig. 4.10.

                                Fig. 4.10
               IQHE and FQHE parameter measurements

All  experiments of IQHE and FQHE are per-
formed at very low temperature, close to the abso-
lute zero and by applying a strong magnetic field.
The sample is usually a very thin GaAs/AlGaAs
heterostructure (denoted as a two dimensional),
grown in thin layers atop a suitable substrate. The
applied magnetic field is normal to the plane of the
two dimensional sample.

The charge carriers are driven by the electri-
cal filed applied in X direction. Due to their inter-
action with the magnetic field, they are deflected
and a potential is accumulated in the Y direction.
The accumulated potential continues until the cre-
ated electrostatic force balances the magnetic force
on the charge carriers. The equation of balance
is: . Then the generated Hall voltage is:

                                    (4.7)

where: EH is the generated Hall potential per
unit length, d  - is the width of the strap, B - is the
magnetic field,  - is the drift velocity. 

Using the kinetic theory, the drift velocity is
obtainable. For the semiconductor materials it de-
pends on the temperature. 

By changing the strength of the magnetic
field the Hall voltage and the longitudinal resist-
ance are changed. The parameters of interest are
the Hall resistance RH and the longitudinal resist-
ance RL. They are obtainable if the the carrier con-
centration in the sample is known (a routine
technique). 

The classical Hall resistance is given by the
simple equation, 

                                    (4.8)

 where:  q is a unit charge, n - is the number
of carriers, and t - is the thickness of the sample.

For given sample the above equation can be
normalized to t. The number of carriers, n, for the
semiconductors  depends on the temperature, but
for a given temperature Eq. (4.7) gives a linear de-
pendence of the Hall resistance (R) on the magnetic
induction (B). In integer and fractional QHE exper-
iments, provided in very thin samples at every low
temperature, deviation of linearity appears as pla-
teaus in the Hall resistance, centred about integer or
fractional value of the resistance, named a Von Kl-
itzing constant, RK. 

                                  (4.9)

The quantum Hall effect (QHE) is discovered
by Klaus and Klitzing in 1980 by observing a two
dimensional system at very low temperature and
strong magnetic field. Such system exhibits  specif-
ic conductivity given by

 ,                                             (4.10)
                 where I is a small integer. 
 A fractional quantum Hall effect (FQHE)

was observed, as a big surprise, from number of ex-
periments. In the FQHE, additional plateaus are ob-
served. In order to explain the effect, the concept of
degeneracy of the Lanndau level is used. This de-
generacy defines a “filling factor” denoted as .

                                              (4.11)
Then the Hall resistance is modified to the

form

                                               (4.12)

Fig. 4.11 shows the observed Hall and longi-
tudinal resistance for integer and fractional quan-
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tum Hall effect. (Summury article by J. P.
Eisenstein and H. L. Stormer (1990).

                         Fig. 4.11
   Integer and Fractional quantum Hall effect
   (courtesy of J. P. Eisenstein and H. L. Stormer (1990)

From Fig. 4.11 we see, that the Hall resist-
ance RH obtains plateau for RH = RK and for other
values, which could be interpreted as integer or
fractional charges. They correspond to the Landau
filling factors, denoted as  and defined by Eq.
(4.7).

Figure 4.12 shows some other data by D. Tsui
et all (1982), where  denotes the Hall resistance
and  the longitudinal resistance, respectively.

The plots show, also, the temperature de-
pendence of the both resistances that is very useful
information for the BSM interpretation. 

For IQHE the observed plateaus correspond
to the filling factors , which are small integers.
For FQHE, the plateaus appear for filling factors
of: 1/3, 2/3, 4/3, 1/5, 4/5, 1/7 an so on. One of the
existing and accepted so far theory is proposed by
Laughlin. The Laughlin theory explains the integer
and fractional charges as a manybody wavefunc-
tion using Landau levels. In additional to the frac-
tional values shown above, however, additional
values are also observed: 5/2, 9/2, 11/2 (M.P. Lilly
et all., 1998). They can’t be explained by the
Laughlin quasiparticle theory.

 

                        Fig. 4.12
       QHE and FQHE (courtesy by D. Tsui et all.)

In 1997 two groups, Israeli (R. de-Picciotto et
all. (1997)) and French (L. Saminadayar et all,
(1997)) reported shot noise observation corre-
sponding to 1/3e- fractional charges in two dimen-
sional structures at temperature near to absolute
zero. The observed shot noise also put a doubt
about the quasiparticle nature of 1/3e- charge. 

Lately in some experiments, Aharonov-
Bohm oscillations are clearly observed in the lon-
gitudinal resistance for integer and fractional
charges. Figure 4.13 shows such data, provided by
J. D. F. Franklin et all. 1995. The authors, also, dis-

ν

ρxy
ρxx

ν

Copyright © 2001, by S. Sarg                                                                                                                                                                4-13



BSM Chapter 4.   Superconductive state of the matter
covered, that the quasiparticles can tunnel
through a barrier.

                         Fig. 4.13
Aharonov-Bohm oscillations for integer and 
fractional QHE (J.D.F. Franklin et all., (1995)

The accepted from some authors explanation
of the Aharonov-Bohm oscillation, as a charge spin
separation of the electron in hollon and spinon is
also very controversial.

The surprising behaviour of Hall resistance at
very low temperature and magnetic field, are sub-
ject of extensive and controversial discussions. At
temperature below 100 mK and magnetic field ap-
proaching zero, the Hall voltage shows large depar-
tures from the classical expected value  Figure 4.14
shows such observations, provided by C. Ford et
all. (1988).

Some other strange phenomena are observed
by M. Lilly et all. (1998). Investigating the quasi-
particle effects for filling factors of 5/2, 7/2, 9/2,
11/2, 13/2, they observed strong peaks in the longi-
tudinal resistance with not smooth peak top. Then
by simply changing the direction of the current
through the sample, they observed strong anisotro-
py of the magnitude of the peaks.  Such phenomena
has been briefly mentioned by H. L. Stormer et all.
(1993) as a puzzling behaviour.

 

                           Fig. 4.14
The quenching of the Hall effect near B=0 at T,100 mK
(C. Ford et all. (1988)

When the FQHE has been examined using a
method of surface-acoustic-wave propagation it is
observed a strange anomaly of attenuation at

 by E. L. Willet et all. (1990). This phenom-
enon was observed only at very low temperatures
and disappears for temperatures above 700 mK.

 Experiments related to the fractional Landau
levels but using the cyclotron behaviour of the
“quasiparticles” has been provided by Kennedy et
all. (1977). They observed a shift in the cyclotron
resonance frequency, concomitant with a drastic
line width  narrowing.

The presented above data a small selection of
the experiments in this area. 

The BSM theory provides explanation for all
of the observed data and phenomena mentioned
above.

4.4 QE and FQHE experiments as examples of 
active control of the light velocity in the sample  

4.4.1 General considerations
The quantum Hall effect according to the

BSM is very useful phenomenon for investigation
of the CL node dynamics at lower ZPE. Our goal is
to understand the CL node behaviour at low ZPE.

ν 1/2=
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The benefit from this will be a valuable informa-
tion about:

- the operation of the SPM vector
- the quantum conditions of CL space
- the oscillation properties of the electron sys-

tem
- the carriers of SC state of the matter
- the refractive index properties of the super-

conductors
- the possibility to invoke quantum states and

to control the refractive index in the 2D sample
(light velocity) in discrete levels

The environment conditions of QHE  experi-
ments are very important factors. The most typical
conditions at which the experiments are provided
are the following:
• The sample is at very low temperature, close to 

the absolute zero
• The sample is two dimensional, i. e. it contains 

deposited layer with very small thickness (in 
the QHE experiments the samples are usually 
referred as 2D structures)

• Very strong magnetic field is applied 
The plane orientation of the layers of 2D sam-

ple, in respect to the magnetic field and direction of
carrier motion, enhances the condition of their in-
teraction with the magnetic field. Due to the thin
multilayer configuration, the refractive index in the
layer cross section is not uniform. This reduces the
strength of the quantum effect based on the bound-
ary condition of magnetic quasispheres. The influ-
ence of other quantum effect described as a
“hummer - drill” (HD) effect, becomes now,
stronger.  This is the effect of the simultaneously
moving and oscillating carrier (SC electron). We
distinguish two types of interactions due to this ef-
fect: 

- direct interaction between moving carriers
and external magnetic field

- interaction between moving carriers and the
quantum conditions in the sample.

Let to pay attention, in first, about the direct
interaction between the applied magnetic field and
the carriers in the sample. The observation of Aha-
ronov-Bohm oscillations, in the longitudinal resist-
ance (see Fig. 3.14, courtesy of J. D. F. Franklin et
all (1995)), make indication that the carriers are
moving in eshellons. In this case their quantum
motions are synchronised, and they are able to be

detected. The second benefit from understanding
the carrier grouping in eshellons is that their quan-
tum motion could be influenced directly by the
strong magnetic field. In the same time the sample
SPM frequency is not stabilized.  So we have the
following oscillators:

- a stabilised SPM frequency of external
space, providing the  strong magnetic field

- SC electrons, whose proper frequency is sta-
bilized by their internal energy

- a not stabilized SPM frequency of the sam-
ple CL space

Now, let see what happens, when changing
the magnetic induction. The resistance between the
plateaus follows the law of the classical Hall effect.
When changing the magnetic field, more or less
electrons are forced to deviate from the longitudi-
nal path due to the direct interaction with the exter-
nal space SPM vector. If the sample was at normal
temperature, its SPM vector may create some re-
sistance, but then its frequency is stabilised. If the
sample is in a SC state, the node SPM frequency is
not stabilized. In this case the number of the mag-
netic protodomains is decreased. The SPM fre-
quency of the individual domains or nodes may
have a phase and frequency dispersion. Then trying
to resist the carrier motion their central frequency
could be dragged by the forced motion of the carri-
ers. In such case, by changing the magnetic induc-
tion we indirectly tune the SPM frequency of the
sample. In this process the carriers serve as a me-
diator between the external space SPM frequen-
cy and the SPM frequency of the sample. They
provide the interface connection between the
both frequencies. If the sample SPM frequency
becomes exactly tuned to a harmonic or subhar-
monic of the external one, (corrected with the
sample refractive index), then the carriers be-
come involved in the quantum motion condi-
tions provided by the both spaces - the external
one and this of the sample. In such case of exact
tuning the interface connection becomes stronger.
As a result of this, the sample quantum effect gets
a positive feedback from the carriers quantum mo-
tion, until the phase difference between the exter-
nal and sample SPM oscillations become zero. The
sample SPM frequency gets strong frequency and
phase synchronization from the external space
SPM frequency. We will call this condition a syn-
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chronized quantum effect. The  synchronized
quantum effect appears for the three type of the car-
riers: 

- normal electron, 
- SC electron 
- stacked SC electrons (2, 3, 4,  and more

stacked electrons)
For any one of the above carriers, the quan-

tum synchronization effect appears when the sam-
ple SPM frequency is either equal or a
subharmonic of the proper frequency of the carrier.
Such synchronization may happen for number of
subharmonics for every one of the above men-
tioned carriers.

The relation between the sample and the ex-
ternal SPM parameters are given by the equation:

                        (4.10)

where:  - is a quantum wave refractive in-
dex of the sample, * - denotes the parameters of the
sample CL space, wile others are parameters of the
external CL space

The Eq. (4.1) should be considered valid not
only for optical materials, but for all solids. In such
aspect the light velocity appears as a quantum wave
velocity, and the quantum wave refractive index
should be referenced to the first harmonic of SPM
frequency. In the further analysis we will use the
term  light velocity instead of “quantum wave ve-
locity” for a simplicity.

Let consider, for example, that the magnetic
field corresponds exactly to a filling factor .
At this condition the internal SPM frequency be-
comes equal to the proper frequency of the normal
electron, while the SPM vector of the magnetic
field, affected by the sample refractive index, will
interact by the frequency: . When the con-
dition  is fulfilled, the electron
moving with its optimal rotational frequency
(corresponding to the optimal confined velocity)
will satisfy simultaneously the external and in-
ternal quantum conditions. If we generalise this
condition for carriers with different proper fre-
quencies, for example a single SC electron, the
condition for quantum synchronization be-
comes:

                  (4.11)

                         
where:    - is the proper frequency of the

carrier, ppr is a proper frequency coefficient
The magnetic field is homogeneous, and the

carriers are moving in a direction perpendicular to
the magnetic lines. In this conditions, when Eq.
(4.11) is fulfilled, a Doppler effect should not be
considered. In such conditions, Eq.  (4.11) can be
extended also for carriers moving with subharmon-
ics, referenced to their proper frequency. Then the
quantum synchronization at exact frequency set
takes a form:

                                    (4.12)

where: n* - is the subharmonic number of the
moving carrier in respect to its proper frequency

It is more convenient to express the quantum
synchronization as a function of the sample refrac-
tive index. By combining Eq. (4.10) and (4.12) we
get:

    or                           (4.13)
                                                      
When applying this analysis for the data from

QHE in § 44.5 and § 4.4.5 we will see, that the fol-
lowing relation is valid:

                                           (4.14)
It appears that, the filling factor  can be ex-

pressed as:
                                             (4.15)

Then, the sample refractive index expressed
by the filling factor is:

                                              (4.16)
Equations. (4.12) to (4.16) are valid for the

central position of the plateaus observed in QHE.
They, still, do not show the conditions defining the
plateau width.

From QHE we see, that the plateau width for
the filling factor set 1,2,3,4, and 1/3, 2/3, 3/3, 4/3,
5/3 falls pretty fast with the subharmonic number

. The plateau width dependence from the subhar-
monic number is a result of an effect that we call a
holding condition.  The holding condition charac-
terizes the strength of the quantum effect. This
strength depends on the subharmonic number at
which the carrier is involved (referenced to the
sample SPM frequency). It is largest for n* = 1 and
falls exponentially when n* is increasing. It can be
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illustrated as a holding force between two sliding
sinusoids possessing a weight. If the sinusoids have
the same period, the holding force is strongest.
When the periods are dissimilar the holding force
falls rapidly. We will see from the data that the
holding condition appears repeatable for a sub-
harmonic set of different carriers. We can denote
it as a holding function, while the subharmonic
number (of the carrier motion in respect to the
proper frequency, f(n*)) will be its argument.

The plateau width can be explained if finding
a mechanism, that tends to keep the obtained quan-
tum feature of the sample despite the low ZPE lev-
el. Such mechanism should provide conditions for
keeping the mentioned above feedback when the
change of the magnetic flux tries to force the sam-
ple SPM frequency to exit from its quantum condi-
tions. The  mechanism could be based on a Doppler
shift. The latter would not appear between the car-
rier motion and the applied magnetic field, but be-
tween the proper frequency of the carrier and the
quantum conditions of the sample.

From the experiment of  J.D.F. Franklin et
all., (1995),  we see, that the carriers are moving in
eshellons. We may expect, that the bunch of this es-
hellons, has a velocity dispersion. Then they will
exhibit a range of Doppler shift dispersion. But
from number of experiments we see, that the pla-
teau width, if explaining by a Doppler shift due to
the axial carrier velocity, will require much larger
Doppler shift, than the average drift velocity. In the
specific conditions of the QHE experiments, the
Doppler effect should be analysed from the point of
view of the direct interaction between the PP SPM
of the applied magnetic field, propagated in the
sample and the hummer drill effect (HD) of the car-
rier motion.

All the carriers, mentioned above are rotated
rings, when they move. They have own proper fre-
quency, and interact with the internal and external
quantum conditions, by the  HD effect.  As a result
of this, their rotational velocity obtains an alterna-
tive component. This component provides a refer-
ence condition for exact comparison between the
sample and external SPM frequency with an accu-
racy up to a portion of the phase. If both frequen-
cies are not exactly equal, a continuous running
phase will exist between them. This running phase,
regarded as a frequency difference, namely, can

contribute a Doppler shift. Having in mind, that
electron tangential velocity at optimal confined
motion is equal to the light velocity, the running
phase may give a very large Doppler shift. It will
become evident from the experiments, that the
quantum synchronisation effect occurs always for
electron tangential velocity in the vicinity of the
light velocity estimated by the external space pa-
rameters. This is valid for all types of mentioned
above carriers.

Let to use the tangential velocity of the elec-
tron in order to estimate the Doppler shift from the
running phase.

We must not forget that when changing the
magnetic flux, we scan the sample SPM frequency,
not directly, but via the moving carriers. The local
feedback between the sample SPM vector and the
carriers provides conditions for a local sample
quantum effect. So when trying to push the sample
frequency to exit from the quantum hold condi-
tions,  the carriers take the frequency discrepancy
on themselves, by changing and adjusting the men-
tioned above running phase. The existing quantum
conditions in the external space and in the sample
convert the running phase into a Doppler shift. In
such conditions we see, that the Hall effect
shows the same resistance, not only for exact
frequency value, defined by Eq. (4.12), but in
the vicinity of this value, as well. For this reason
a quantum plateau in the Hall resistance is ob-
served.

The direct interaction between the magnetic
filed and the rotating electron due to the HD effect
is illustrated by Fig. 4.15.

Fig. 4.15. Direct interaction between the external mag-
netic field and the rotating electron

It is convenient to estimate the Doppler shift
by the influence to the external and internal quan-
tum conditions on the tangential velocity of the ro-
tating carrier. 
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The tangential velocity of the rotating elec-
tron and all other carriers is given by: 

                                          (4.16)
where:  - is the angular frequency of the ro-

tating electron.
It is evident, that the Doppler shift will con-

tain a pretty large contribution from the difference
between the light velocities of the sample and the
external space. Let estimate this contribution by us-
ing the quantum wave refractive index of the sam-
ple, defined by the ratio between the two light
velocities. It will be shown from the QHE experi-
ments, that the rotational frequency of the carriers
is always in the vicinity of . 

Let estimate the frequency range that the
Doppler shift could provide for the different com-
binations, between n* and ppr parameters, partici-
pating in Eq. (4.12). Using the relativistic equation,
we estimate the Doppler shift as a dimensionsless
factor:

                     (4.17)

where:  - is the tangential velocity con-
fined with the internal quantum interactions,  -
is the tangential velocity from the direct interaction
with the applied magnetic field.

The velocity  has the following depend-
ence from  internal quantum conditions:

.                                               (4.18)
For direct interaction between external SPM

frequency and the carrier at first quantum harmon-
ics we get:

                                        (4.19)
Substituting  (4.18) and (4.19) in Eq. (4.17),

we get:

                              (4.20)

Note: Both  and  are estimated by the
external space parameters.

The nominator under square root is put in
modulus, because the velocity difference can take
either positive or minus sign. It comes from the
tuning possibility of  by B, (from both sides
of the exact quantum synchronization value) from
one side, and from different ratio , from the
other.

According to Eq. (4.20), the plateau width for
one and a same type of carriers will depend of n*
and will decrease when n* is growing. However,
the plateau width is not completely determined by
Eq. (4.2). From the experiments we see, that the
plateau width falls pretty sharp with n*. The pla-
teau width does not depend on a single factor. So if
defining a hold function, which defines completely
the plateau width, it should take into account the
following three factors:

 - the Doppler shift, defined by Eq. (4.20)
- the non linear dependence of ni from B, 
- the strength of the direct interactions 
let to determine the contribution from the sec-

ond factor. When analysing the data from QHE we
will see, that the  factor has completely linear
dependence of B, so the following relation is valid:

                                              (4.21)
where ksl is the coefficient of proportionality

(the slop of the fitted line). Then according to Eq.
(4.16) we have.

                                           (4.21.a)
The variation of B will cause a variation of ni.

We can estimated it as a first derivative of ni from
B.

                                           (4.22)

The larger variation of ni means a lower hold-
ing effect. Consequently, the holding contribution
should be inverse proportional to . 

                                    (4.23)

The third factor is the drag momentum in the
direct interactions by HD effect. In a first approxi-
mation, it could be simulated as a normalised mo-
mentum difference between two sliding sinusoids
with a frequency ratio, corresponding to a subhar-
monic number. Analytically, such condition is ex-
pressed by the equation:

 (4.24)

The solution (4.24) is not defined for integer
n*, but is defined for , where  is small
enough (for example 0.001). Then we may obtain
the solutions for consecutive , and normalise
them to the value of . The obtained function
fits excellently to a simple function:
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                                      (4.25)
The obtained simple equation (4.25) could

be regarded as a quantum efficiency of the HD
effect, referenced to the external SPM field.

The quantum efficiency  is related to the
plateau width.

The contributions from all three factors, pre-
sented by Eq. (4.20, (4.23) and (4.25) act simulta-
neous, so the total frequency shift defining the
plateau width should be equal to their product.

                  (4.26)

where:  - is a normalised plateau width, a1
is  a coefficient of proportionality. 

If estimating the plateau width by the range of
B change, we have.

                                             (4.27)
The coefficient , takes into account the

strength of the interaction.
Eq.uation (4.27) gives closer values of calcu-

lated plateau with for single and stacked SC elec-
trons, moving by different subharmonics. It does
not give closer values if applied for normal elec-
trons. While in first case, the charge is hidden, in a
second one it is not. The reason is that for electron
moving with , the interaction could be en-
forced by formation of some boundary conditions
of MQ’s, as in the normal state of the matter.

The frequency shift in the real case may devi-
ate from Eq. (4.26), because we used idealised case
of momentum difference between two sinusoidal
sources for the direct interaction between carriers
and the magnetic field. While the carrier proper fre-
quency is of sinusoidal type, the bumps of the CL
node magnetic quasisphere are not sinusoidal. This
will alter the simple interaction function given by
Eq. (4.25). But this could give one useful possibil-
ity to investigate the shape of the magnetic quasi-
sphere. In the present analysis, we will not go so
far, because more factors should be taken into ac-
count.

Additional small Doppler shift, that may in-
fluence the quantum stabilization, may be contrib-
uted by the velocity dispersion between the carrier
eshellons.  This Doppler shift is convolved with the
major Doppler shift, because the eshellon carriers
participate in the both interactions simultaneously.
This will give a comb like structure of the  com-

bined Doppler shift. There is also a threshold level
for development of synchronised quantum effect. If
the coefficient  is large enough and the threshold
level is inside the comb like Doppler shift, oscilla-
tions appear in the longitudinal resistance. This os-
cillations are known as Aharonov-Bohm
oscillations. They are experimentally observed (see
Fig. 4.13). In many QHE experiments, these type
of oscillations are not observable, because, the lack
of special conditions, necessary to enhance this ef-
fect to a level of detection.

The Aharonov-Bohm oscillations, even un-
detectable, may play a role in the plateau forma-
tion. When changing the magnetic flux, the
quantum synchronization effect starts to work be-
fore the central point of the plateau is reached. This
might be explained by the velocity distribution of
the carriers  participating in the eshellons. Let sup-
pose, that all electrons in one eshellon have syn-
chronised rotational frequency due to their local
HD effect and the interaction with the local pro-
tomagnetic domains. Such eshellon may have
much stronger direct interaction with the magnetic
field. When the  Doppler shift from the combined
factors satisfies the Eq (4.19), a synchronised quan-
tum effect will be obtained.

 The frequency range at which the sample is
synchronised is usually lower than its SPM fre-
quency at normal ZPE (not cooled conditions).
This is due to the resonance frequency decrease
when the temperature approaches the SC state.
This explains why all the plateau widths exhibit a
same temperature dependence. This is clearly
shown by the experimental data provided by D.
Tsui et all (1982) (see Fig. 4.12).

As a result of the low temperature SPM
frequency shift, the sample’s quantum features
are also shifted. 

The SPM frequency defines the light velocity
in the sample. If all quantum features are shifted as
a result of cooling, the sample CL parameters
can be identified by the optimal confined motion
of the electron. Then the quantum wave (light) ve-
locity of the sample can be estimated. It may ap-
pear, that the quantum refractive index, identified
by the internal quantum features gets smaller value
than unity for some filling factors. This is very in-
teresting result, but it appears in the data anal-
ysis from the QHE experiments. 

y 1/n∗ ηHD= =
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ksl
------

1 n∗/ pprni( )–
1 n∗/ pprni( )+
-------------------------------------=

∆ν

w as ∆ν( )=
as

n∗ 1=

a1
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Comparing the quantum motion of the elec-
tron system in normal ZPE, derived by hydrogen
series, with this in the QHE experiments, we see
that the allowed levels corresponds to a consecu-
tive subharmonic numbers of: 1, 2, 3, 4, 5. This
provides additional confidence and confirmation
about the subharmonic set used to describe the
quantum motion of the electron system.

From the provided analysis we see, that the
quantum Hall experiments give a possibility to
scan the SPM frequency of the 2D sample at very
low temperatures, by changing the magnetic field.
The diagram of the involved interaction processes
is illustrated in Fig. 4.16. 

                          Fig. 4.16
Scanning of the sample SPM frequency in QHE
DI - direct interaction; CR - carrier rotation,
 D.S. - Doppler shift; SH - subharmonic (defining the

carrier velocity) 

Summarizing the synchronised quantum ef-
fect, it is useful to emphasize the following fea-
tures:
• The allowable stabilization frequencies for 

the induced quantum effect are determined 
by the combinations between the proper fre-
quency of the involved carrier , and the 

subharmonic  at which the carrier per-
forms a confined motion in the condition of 
the induced quantum effect.

• The quantum wave velocity  (respectively the 
refractive index) is defined only for the 
points of the induced quantum effect.

• In conditions of induced quantum effect, the 
first derivative of the longitudinal conduct-
ance in function of the Doppler shift is nega-
tive.

The third feature is related with the carrier
mobility in a confined motion. When the Doppler
shift is zero, the strength of the confined motion
due to the internal quantum effect has a maximum
value and the longitudinal conductance is also
maximized. This means, that the sample CL space
allows the carriers to move with minimum energy
loss. This feature explains also, why the elec-
trons in the normal state of the matter (at nor-
mal ZPE) obtain preferable velocities due to the
quantum motion.

4.4.2 Signature of the electron system in the 
Integer quantum Hall effect

Let suppose, that we scan B from right to left
and approach the plateau of filling factor .
Due to the finite value of , the Eq. (4.11) will
become satisfied before reaching the exact value of
B corresponding to the . A similar conditions
appear, when overpassing the exact value. As a re-
sult of this, a plateau appears. It is exactly symmet-
rical on , because the Doppler shift and the
holding functions are symmetrical about the pla-
teau centre. When B is near the edge of the plateau,
less carriers are involved in the quantum stabiliza-
tion process. Approaching the plateau centre, more
carriers are involved. This is consistent with the
change of the longitudinal resistance under the pla-
teau. So we see, that for the integer QHE the pla-
teau for  is contributed by the normal
electron,  moving with an optimal confined veloci-
ty, estimated by both, the external space and the
sample SPM. Consequently, the sample SPM fre-
quency is locked to the value of the external space
SPM frequency, divided by the sample refractive
index, valid for this point. In the same time the
sample SPM frequency,  could be smaller that its
value at normal ZPE, due to the temperature SPM

νSPM∗

n∗

ν 1=
νrot

ν 1=

ν 1=

ν 1=
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frequency shift. If estimating the electron velocity
by the number of passed nodes per one fundamen-
tal time base (Compton time), it will appear closer
to the drift velocity, of the sample at normal tem-
perature, corrected by the effect of the temperature
SPM frequency shift. 

If the scanning magnetic field approaches a
value for a filling factor 2, the sample SPM fre-
quency becomes locked to a lower value and gives
again a quantum motion conditions. In this case,
the sample SPM frequency is half of the external
one and its  is twice longer that the . The
filling factor 2 corresponds to a quantum motion of
the normal electron with a second subharmonic, es-
timated by the proper frequency (equal to the inter-
nal  SPM frequency for a normal electron). When
estimated by the external SPM frequency the mo-
tion again  corresponds to a first harmonic.

Consequently we may conclude, that:
• The quantum signature of the normal elec-

tron is provided by the  QHE plateaus. When 
estimated by the external  SPM frequency, 
the quantum motion corresponds to the first 
harmonic, but when estimated by the proper 
frequency it appears as a subharmonic. The 
subharmonic number is equal to the  Landau 
level number.

Let to use the experimental data provided in
the article of J. Eisenstein and H. Stormer, (1990)
and shown in Fig. 4.11. The identification of the
normal electron signature is shown in Table 4.2.
The last column shows the tangential velocity esti-
mated by the external space parameters (c - is
the light velocity in the external space).

Signature of the normal electron 
                                              Table 4.2

-------------------------------------------------------------------------
 Filling factor                                      B            
                                                              [T]              [km/s]
-------------------------------------------------------------------------
       1              1                   1                   9.59              c/1
       2              2                 0.7071            4.79              1.414c
       3              3                 0.5773            3.14              1.732c
       4              4                 0.5                  2.37              2c
     ----------------------------------------------------------------------

4.4.3 Signature of the SC electron in the FQHE
We found out, that the plateaus for the integer

QHE are produced by the normal electron. Let,
now, see what is the signature of the SC electron.

The single SC electron has a proper frequen-
cy 3 times larger than the Compton frequency:

. Then a similar process will develop,
when the B field has a larger value than for .
In this case the sample SPM frequency gets a value
three times higher, than for level one. In this condi-
tions the SC electron gets an optimal confined mo-
tion, estimated by the sample SPM parameters and
by external space. This corresponds to a level

. In the same time the absolute value of
 may be lower that this at normal temperature.
At level 2/3, the SC electron is moving as a

second harmonic estimated by its proper frequency,
and first  harmonic estimated by external SPM fre-
quency (but corrected by ni.)  In a similar way the
levels 3/3, 4/3, 5/3, 6/3  correspond to quantum mo-
tion at 3, 4, 5, 6 subharmonic, estimated by the
proper frequency of the SC electron.

The locking conditions for the single SC elec-
tron, according to Eq. (4.13) are given by Table 4.3,
where:  - is the subharmonic number estimated
by the carrier proper frequency, , The last col-
umn is the tangential velocity, , estimated by the
external space parameters. The frequency ratio be-
tween the proper frequency of the SC electron and
external SPM frequency  is  .

Signature of the single SC electron
                                                         Table 4.3

-------------------------------------------------------------------------
 Filling factor                                        B           
                                                                     [T]            [km/s]
-------------------------------------------------------------------------
       1/3                1              1.732                   28.7         0.577c
       2/3                2              1.225                   14.3         0.8163c
       1                   3              1                           9.67          1c
       4/3                4              0.866                   7.14         1.155c
       5/3                5              0.7746                 5.69         1.291c
        2                  6              0.7071                 4.79         1.414c
-------------------------------------------------------------------------

We see, that the plateaus at filling factors 1
and 2 are contributed by both, the normal electron
and the single SC electron.

λSPM∗ λSPM

ppr 1=

n∗ ni υt c/ni=
ν

νpr 3νSPM=
ν 1=

ν 1/3=
νSPM∗

n∗

νSPM∗

υt

νSPM ppr 3=
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n∗ ni υt c/ni=
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4.4.4 Signature of the stacked SC electrons
The proper frequencies of the stacked elec-

trons were given in Table 4.1. The signatures of the
two and three stacked electrons are shown respec-
tively in Table 4.4, and Table 4.5 The same source
of the experimental data is used.

Signature of two stacked SC electrons
                                                Table 4.3
-------------------------------------------------------------------------
 Filling factor                                 B               
                                                              [T]               [km/s]
-------------------------------------------------------------------------
       1/5                     1                                        
       2/5                     2           1.581            23.9           0.633c
       3/5                     3            1.291          15.9            0.7746c
       4/5                     4            1.118         11.96           0.8944c
        1                       5            1                  9.59                c
       6/5                     6            0.8452         6.77             1.183c
-------------------------------------------------------------------------

Signature of three stacked SC electrons 
                                               Table 4.3
------------------------------------------------------------------
 Filling factor                                   B                 
                                                               [T]               [km/s]
-------------------------------------------------------------------
       1/7                  1                                          
       2/7                  2                                          
       3/7                  3               1.528           22.3             0.6544c
       4/4                  4               1.323          16.7             0.7558c
       5/7                  5               1.183          13.36           0.8453c
       6/7                  6                1                  9.59                 c
-------------------------------------------------------------------

4.4.5 Scanning the sample SPM frequency and 
invoking a synchronised quantum effect

Without the presence of the electron and its
SC configurations, the scanning of the low energy
SPM frequency of the sample and the synchronised
quantum effect would not be possible.

Fig 4.16 shows a plot of the frequency ratio
 in function of the magnetic inductance

B. The data are taken from the Tables 4.2 to 4.5.
The carriers are shown as square dots and are con-
nected with a line, showing a linear trend. The no-
tations by the filling factor are shown below the
line, while the notations of the identified carriers -
above the line. In the right side of the plot,  the dis-
crete values of the sample refractive index are
show. 

While the SPM ratio could be considered
as a continuous function, the refractive index is
defined only for these discrete values, for which
a synchronized quantum effect is possible. 

One surprising result of the synchronised
quantum effect is that, the refractive index of the
sample for filling factor below 1, becomes smaller
than unity. This means, that the light velocity in the
sample estimated by the external frame is larger
than the light velocity in vacuum. This result is a
logical, because it corresponds to , esti-
mated by the external frame parameters. We, may
confirm this result, by some analysis of the node
dynamics.

It is apparent from the presented plot in Fig.
4.16, that the sample SPM frequency is really
scanned, when changing the magnetic flux. If using
data for other carriers, corresponding to the stacked
SC electrons with larger stacked number, they also
lie in the same curve. We see that the dynamical
range of the frequency change, form this data is
3.5.  

While the sample SPM frequency follows
the magnetic flux, the synchronised quantum effect
appears, only when Eq. (4.17) is satisfied. These
are discrete points in the SPM frequency scale. The
quantum light velocity and the refractive index
that the sample obtains are defined only for this
points. The quantum refractive index scale with its
discrete values is  shown in the right side of the
plot. 
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n∗ ni υt c/ni=
ν
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ν
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We see, that the function   is a dis-
crete function, while  is a contin-
uous one. For simplicity, however, we may use the
first function, regarding it as an interpolated func-
tion passing through discrete values. In the analy-
sis, we found, that the sample refractive index in
function of the filling factor is given by the simple
Eq. (4.15) . The argument of this function
depends on B. We can plot the function 
from the same data tables. It is shown in Fig. 4.18,
fitted to a robust line. It is perfectly linear with a
slop coefficient 

                         Fig. 4.18

Plotting data from different experiments we
get a same linear dependence of  from B, but
with different coefficient ksl. Then the following
relation is obviously valid:

                                    (4.28)

From Eq. (4.28) we get:

:                                            (4.29)
                          where n - is the number of

carriers. 
We see from Eq. (4.29) that the slop of B

depends only on the number of carriers, while the
unit quantum flux (h/q) is unchanged. There is not
evidence, again,  that a fractional charge could ex-
ist. This in agreement with the accepted rule, for
the charge unity.

There is one additional outcome from the
function expressed by Eq. (4.28). If we put the pla-
teaus in the plot in Fig. 4.16, they will be parallel to
B axis as in the Hall resistance plot. In the same
time the plateaus indicate the points of the sample
SPM frequency stabilization. Then the plot of Eq.
(4.28) is very similar to the theoretical plot of the
frequency of the conical pendulum in function of
the relative displacement , that was discussed in
$2.9.3 and given by Eq. (2.17.f). (Resonance fre-
quency stabilization, Chapter 2). The  general form
of the model equation is:

            (4.30)
where: f - is the resonance frequency, L(x) - is

the energy dump function, x - equivalent node dis-
placement in the PM zone, 0.23 - offset factor for

Fig. 4.17

Scanning of SPM frequency in QHE experiments
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the operating in the PM zone, a - adjustable span
coefficient, b - adjustable frequency offset. The
plot of the Eq. (2.17.f) is shown again in Fig. 4.19.

                                           Fig. 4.19
                     Node resonance frequency with ZPE stabilization 
                     by the conical pendulum model

By comparing the similarity between the plot
in Fig. 17 and the linear range of the plot in Fig.
4.18 we see, that they are similar with the following
correspondence:

 B ->  x ;   -> f.
            This similarity shows, that the change of the
magnetic field B corresponds to a linear change of
the displacement x. In order to use the conical pen-
dulum model for investigation the resonance fre-
quency behaviour, we have to correct the model by
taking a square root of f. Then the simulation equa-
tion for the resonance frequency scanning from x
will take a form:

 (4.31)

, where kx - is a constant of proportion-
ality. 

Equation (4.31) may be used for approximative
investigation of the CL node resonance frequency
of the sample.

We may show, that a resonance stabilization
could appear as a plateau, by using the Eq. (4.30) or
(4.31). For this purpose we may simulate the dump
energy as a gaussian function.

                                         4.20
    Plateau simulation by the conical pendulum model

 It will correspond to the energy of some carrier
when getting direct interaction from the external
quantum space. The plots of the selected dump en-
ergy function and SPM frequency ratio are shown
respectively in Fig. 4.20 a, b. The model does not
simulate the Doppler shift, and does not provide a
features for the plateau centring. But it demonstrate
the mutual parameter behaviour. It also shows, that
the frequency is very sensitive to the energy dump-
ing.

In the theoretical treatment of the QHE and
the provided so far data analysis, an assumption
was made, that the quantum motion of the carrier in
respect to the external SPM frequency corresponds
to a first harmonic. If this was not true, the depend-
ence of the observed states from B would not be ar-
ranged in a line, as  the plots, shown in Fig. 4.17
and 4.18, but spread in a area. There is one addi-
tional confirmation, that the dependence of the
sample SPM vector from the filling factors, and
from B is aligned in a continuous curve. The con-
firmation is provided, when investigating the shift
and the width of the cyclotron resonance frequency
in function of the filling factor. The first successful
measurements are provided by. Fig. 4.25 shows ex-
perimental data of the spectral width and shift of
the cyclotron frequency in function of the filling
factor at different magnetic field as a parameter.

1/ν( )
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                        Fig. 4.21
Spectral width and shift of the cyclotron frequency in

 function of the filling factor (T. A. Kennedy et all. (1977)

 The shift of the cyclotron frequency vs the fill-
ing factor, according to BSM means, that the SPM
frequency of the sample is changed. The maximum
of the cyclotron width vs the filling factor could be
explained by the tendency of the different carriers
to move with a same velocity, estimated as a
number of passed nodes per unit time. Someone
may argue, that the  state is contributes by few
types of carriers: a normal electron,  a single sc
electron(3),  a two stacked sc electron(3), and so
on. However, the peak of the resonance line has a
finite width. This means, that different combina-
tions of carriers with different subharmonics num-
bers have a tendency to move with similar velocity.
This is completely logical, if we estimate the veloc-
ity as a number of passed nodes per unit time. The
node distance of the low ZPE channels is not
changed by the temperature and the work for node
displacement due to the FOHS motion should be a
similar. So we may conclude, that: 

In a low ZPE condition, the carriers tend to
move with velocities closer to the optimal con-
fined velocity of the electron. 

The above conclusion is important for under-
standing the superconductive state of the matter.

4.4.6 The plateau width as a signature of direct 
interaction between the moving carriers and 
the quantum conditions

The plateau width for some states contributed
by single and stacked SC electrons can be calculat-
ed by Eq. (4.26).  The equation could be used for
state combinations, whose filling factor is different
of unity. Using again the experimental data of Fig.
4.11, we estimate the plateau width in B units. Then
we may calculate  by Eq. (4.26), using the data
for B, ppr, ni and n* from previous tables. In order
to compare the plateau widths we have to make:

- normalization of the width to one selected
value of n*

- squaring  in order to obtain width com-
parison in relative units of magnetic field. (because
B is under square root in Eq. (4.26).

Following this procedure a comparison be-
tween the measured and calculated plateau widths
is made for some states of single and two stacked
electrons. The data are presented in Table 4.4.

                                                   Table 4.4
-------------------------------------------------------------------------
             n*                      
-------------------------------------------------------------------------
SC e-   1    1/3    1.79     3.31          27.28      2.15       4.62
SC e-   2    2/3    0.54      1              12.71       1            1
SC e-   3    3/3
SC e-   4    4/3    0.24      0.44          7.62 

2SC e-  1
2SC e-  2   2/5    0.93      1               23.4          1            1
2SC e-  3   3/5    0.4        0.43          14.92        0.63       0.39
2SC e-  4   4/5    0.12      0.13            8.71        0.372     0.138
-------------------------------------------------------------------------

The measured and calculated widths are nor-
malised for , because this is a common avail-
able state for measuring and calculation. The
accuracy of the measured plateau widths for 
is significantly reduced, but our purpose is to dem-
onstrate the procedure. The measured and calculat-
ed normalised widths from a single and two
stacked electrons are combined in order to obtain
the missing points for n*. Fig. 4.22 shows the re-

ν 1=

∆ν

∆ν

ν ∆± B ∆Bnorm ∆ν/a1 ∆νnorm ∆νnorm( )2

n∗ 2=

n∗ 1>
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sultant normalised widths plotted against the sub-
harmonic number n*.

                                Fig. 4.22
Comparison between calculated and measured plateau
widths contributed by single SC e- and two stacked SC e-

.
We see, that some deviation exists between

the theoretical and measured  plateau widths for
. The discrepancy could be as a result of not

taking into account the following two factors:
- relative strength of the MQ boundary condi-

tions at first harmonic
- not sinusoidal shape of MQ bumps of SPM

vector.

4.4.7 Signature of the SPM vector behaviour 
around the critical energy level Ec2.

 It was discussed in §4.1, that the critical en-
ergy level Ec2, corresponding to p. A0 of energy
well 2, can be detected by the behaviour of the
SPM vector. Below the Ec2 energy point, the SPM
vector could not get  spatial rotation. This
change of the SPM vector can be detected as dis-
turbed quantum behaviour of the carriers. In some
of the QHE experiments, this effect is observed. It
is known as plateau for  at very low tempera-
ture or “quenching of the Hall effect”. Experimen-
tal data  given in Fig. 4.14 (C. Ford et all. (1988)
clearly show this effect. The plateau appears only
for temperature below 100 mK and for B approach-
ing zero. The plateau and the close region around
the plateau, both, appear shifted from the trend of
the classical Hall effect. In the same time the longi-
tudinal resistance sharply arises, indicating a disap-
pearance of any internal quantum effect. The
strong temperature dependence of this effect is

completely consistent with our theoretical consid-
erations.

4.4.8 Signature of the positron in FQHE
The positron systems is comprised of a posi-

tive FOHS with an internal RL(T) in the trapping
hole of which a negative core oscillates. According
to the mass equation, and form the 13S1 -23S1 pos-
itronium, the proper frequency of the positron is
twice the Compton frequency. Following the same
logic as for the SC electron, the positron signa-
ture in FQHE should be proportional to 1/2
state. Such states are observed in number of FQHE
experiments. 

For observation of 1/2 or multiple of 1/2
state, one specific condition is important. The sig-
natures of such states appear at much lower abso-
lute temperature than the other fractional levels. In
the experiment provided by M. P. Lilly et all.
(1998), they appear, at sample temperature below
150 mK. The behaviour of the longitudinal resist-
ance from B at different temperatures is shown in
Fig. 4.23.a., b.

                            Fig. 4.23

n∗ 1=

4π

B 0=

a.

b.
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The 1/2 (and multiple) states are distin-
guished from integer and fractional states by a
number of specific features:

- Strong peaks are observed only in the longi-
tudinal resistance

- The observed set follows the order: 3/2, 5/2,
7/2, 9/2, 11/2,13/2,15/2. 

- The plateaus of Hall resistance after 5/2 are
missing

- Strong peak features appear for values
above 7/2 

- The peak amplitude between 7/2 and 9/2
changes with jump and then gradually decreases.

- Some anisotropy is observed when chang-
ing the direction of the current in the sample (see
Fig. 4.23  b.)

Before reaching this low temperature the
sample has  been passed through ZPE levels (suit-
able for creating of SC electrons according to
BSM). Let reference the analysis again to Fig. 4.3
a. At very low ZPE level, the small radius rmin ap-
proaches the point A. The absolute polarisation of
the EQ is limited by the low ZPE. Then the prox-
imity E-field becomes weaker and the positron
could be separated from the electron shell. Due to
the lower E field it could not be attracted inside of
the electron. So the environment allows existence
of free positrons. The free positron starts  to partic-
ipate in direct interactional motion due to the exter-
nal  quantum field. The positron charge, however is
not hidden as the SC electron and may interact
much stronger with some distant CL domains,
which have comparatively higher ZPE.   As a result
of this it gets much stronger resistance. We found
in the presented analysis that for all carriers, exhib-
iting plateau in Hall resistance, the direct interac-
tion between them and the external SPM frequency
is given by the simple relation: . This
means one rotation cycle per one  cycle. The

 is additionally lowered by the much lower tem-
perature (in comparison to QHE). Then the above
condition could be satisfied only for higher axial
velocity. The both factors: the larger resistance and
the twice higher proper frequency (than the normal
electron), are obstacles for such motion. Then the
possible motion of the positron is that it may oscil-
late not once but number of cycles per one rotation-
al period of . Then the rotational frequency
of the positron should be a subharmonic of

. Here again we have to keep in mind that 
is defined only, when an internal quantum effect
occurs. 

One specific characteristic of 1/2 states is that
the nominators are odd. This means that only the
odd subharmonics   are presented.  But this is dif-
ferent in comparison to the integer and fractional
QHE. The explanation of this new feature will be-
come evident when analysing the direct interaction
between the applied magnetic field and the rotating
positron, interacting at subharmonic. Fig  4.24 il-
lustrates the direct interaction due to a HD effect
for three cases:

- the carrier interacts at 

- the carrier interact at 

- the carrier interact at 

                                   Fig. 4.24
        Direct interaction between the carrier and the 
magnetic field for three cases (case b. does not work)

The direction of magnetic field is indicated
by dashed lines with arrows and could be consid-
ered as a direction of PP SPM vector. The rotation-
al direction of the positron ring structure is shown

νpr νSPM/ni=
νSPM/ni

ni

νSPM

νSPM/ni ni

νpr νSPM/ni=

4νpr νSPM/ni=

5νpr νSPM/ni=
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by arrows. The AC oscillations due to the HD ef-
fect are presented as a sinusoid around the ring.
The dark shaded area of the sinosoid indicates a di-
rection coinciding with the ring rotation, while the
light shaded area is in the opposite direction. The
screw type of motion due to a second order helical
step assures axial motion in one direction. Due to
the homogeneity of the magnetic field and carrier
motion orientation, the latter takes rotational ener-
gy from the field, that is transferred to axial motion
energy. The rotational energy is obtained in result
of interaction between AC forces from HD effect
and the PP SPM vector of the magnetic field. In or-
der to estimate the resulting force, an axis OO‘ is
drawn vertically through the centre of the positron
ring. Then the interaction can be easily estimated
by the balance of the forces between left and right
side of the axis OO‘. The phases between PP  SPM
vector of B and the proper oscillations are self ad-
justed due to the inertial moment of the carrier from
the screw type of motion.

In case a. the right forces are clearly predom-
inant over the left ones. This is the HD interaction
for the FQHE, discussed in the previous paragraph.

In case b. the right forces are equivalent to the
left forces.  Consequently the net effect of the ring
rotation is zero. Therefore, this is a not working
case. The rotation frequency is a subharmonic
number four. The result is the same for all even
subharmonics

In case c. the right forces are predominant. So
this is a working case. The rotation frequency is a
subharmonic number five of  the proper frequency.
This same situation is valid for other odd subhar-
monics.

Consequently, we may conclude, that:
When the direct HD interaction between

the PP SPM of the magnetic field and the carri-
ers oscillations is realised in subharmonics, the
even subharmonics are excluded due to the
equal balance between right and left forces. 

Figure 4.24.a and b. shows two features of the
peaks:

- the  peak maximum has an optimum values
between 7/2 and 17/2;

- the peaks are strongly dependant on the tem-
perature

The first feature is explainable by the previ-
ous analysis. If the number of subharmonics is

large, the difference between the right and the left
forces will be decreased. In fact the interactional
forces are not sinusoidal but possessing higher har-
monics, because of the sharp bumps of the SPM
MQ. The fall of the  amplitude in the side of
lower subharmonics number, shown in Fig. 4.23.b.,
could be a result of the magnetic radius dependence
from the carrier velocity. At lower subharmonics
the carrier motion is closer to the optimal one and
the magnetic radius is smaller. Then the HD inter-
action also could become smaller.

 The observed phenomena of the large peak
change appears in a temperature range of the sam-
ple from 25mK to 100 mK. The strong dependence
of the peaks from the temperature is due to the node
operation at very low  ZPE levels, close to Ec2. In
order to illustrate the node operation in such condi-
tions, the return forces - energy diagram is shown
in stretched form in Fig. 4.25.

                             Fig. 4.25
           Return forces - energy diagram by absolute
           temperature scale

Instead of the energy levels, the correspond-
ing temperatures are indicated. The temperature Tn
corresponds to a normal ZPE. The FQHE from
electrons and SC electrons are observed in a range
between T1 and T2. The positron signature is ob-
served in a range between T0 and T1. 

 The small radius rmin for the range between
T1 and T2 is determined by the sector HE. For op-
eration in range T0 and T2, the ZPE is so small that
the electrical field of the carrier RL(T) could cause
enough EQ polarisation if rmin operates in HE sec-

ρxx
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tor. So the rmin is forced to shrink and it begins to
operate in GD sector. The GD sector, however has
a different sign of the slop, in comparison to the HE
sector. This affects the frequency stabilization of
the synchronised quantum effect.  In such case
the induced quantum effect in the sample, when in-
teracting with the moving and oscillating carriers
(only positrons) can not get frequency stabilization
due to a Doppler effect. Now the feedback appears
as a positive for the frequency stabilization, so the
stabilization effect is disturbed. We have increase
of the longitudinal resistance in contrary to the
FQHE. The plateaus in Hall resistance are missing
due to the lack of frequency stabilization. 

The operation of rmin in the HE sector corre-
sponds to a node operation in the PM mode, while
in GD sector - to the DM mode. For lower subhar-
monic numbers as 5/2 and 7/2 some CL domains
may operate in PM mode and others in DM mode.
For this reason the both features appear; a large
positive pulse (DM mode) and a small deep in the
middle (PM mode). At lower temperature, more
CL domains flips to DM mode. 

Now let to explain the last feature - the
anisotropy. When the SC electron is decayed into a
positron and a degenerated electron, only the
positron is an oscillation system. The degenerated
electron could not participate in a quantum motion.
The electrical charge of the separated degenerated
electron  again appears external, so it can move due
to the external electrical field, but the motion is not
of quantum type. From the other hand, the carriers
in the external conductors (wires, power supply)
are normal electrons. So in the contact points be-
tween the conductor and superconductor, the posi-
trons and electrons has to be reconfigured in a
normal electron. They both, however, had obtained
different spatial distribution in the sample. When
the direction of the current through the sample is
changed, without changing the B and temperature,
the old spatial distribution appears in conflict with
the new required one. This gives the effect of the
anisotropy. The anisotropy effect is also men-
tioned by H. L. Stormer et all, (1993).

The Landau level 1/2 in 2D at lower temper-
ature is experimentally confirmed also by investi-
gation the propagation of surface acoustic

waves.(R. L. Willet et all. (1990). Some data from
this experiment are presented in Fig. 4.26. 

                              Fig. 4.26
 SAW amplitude vs magnetic field at four different
temperatures at 700 MHz
(courtesy of R. L. Willet et al.)

The valley in the longitudinal resistance ap-
pears only at very low temperature. This is an indi-
cation of the SC electron decay into a free positron
and degenerated electron. 

The signature of the free positron gives a pos-
sibility to investigate the node resonance frequency
at very low temperatures. The relation between the
sample and external SPM frequency is similar as
those given by Eq. (4.12), but with some difference
about the direct interaction

                                               (4.31)

where: n‘ - is a subharmonic of the proper fre-
quency, but indicates a different interaction.

 Different notation of n‘ instead of n* is used
in Eq. 4.31) in order to emphasize the different in-
teraction. The difference is the following:

n* - denotes direct interaction, at which the
n* appears a first harmonic of the external frequen-
cy between  and the carrier (taking into ac-
count ni), but in the same time is a subharmonic
number of internal  frequency.

νSPM*
νSPMppr

nin'
---------------------=

νSPM

νSPM∗
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n‘ - denotes a direct interaction, at which n‘
appears a subharmonic of external frequency 
(taking into account ni), but a first harmonic of the
internal frequency .

By analogy to Eq.  (4.13) for FQHE we have:

    or                           (4.13)
                                                      
The Eq. (4.16)  is also valid.
Fig. 4.27 illustrates the refractive index and

the ratio (ppr/n) in function of B, extracted from the
data of Fig. 4.23.b.  The second plot appears again
linear.

                            Fig. 4.27
Plot of sample refractive index and (ppr/n) ratio in 
function of magnetic field, B

We see that the positron signature gives addi-
tional possibility to investigate the SPM frequency
at very low ZPE. The refractive index at Landau
level 35/2 is 0.239, but levels with higher nomina-
tors have their signature.

4.4.9 Summary and conclusions
• The QHE gives a possibility to investigate 

the CL node operation at low ZPE and the 
quantum features of the sample space

• The electron system proper frequency (elec-
tron  shell - positron)  is equal to the Comp-
ton frequency  (SPM frequency in the local 
Earth field).

• The proper frequency of the free positron 
system is 

• The proper frequency of  the single  SC elec-
tron, is equal to , and is a same as the 
positron proper frequency, when it is inside 
the electron.

• The SC electrons are the carriers in the 
superconductive state of the matter

• The quantum refractive index of cooled sam-
ple may fall below unity.

• In low ZPE condition, the carriers tend to 
move with velocities closer to the optimal 
confined velocity of the electron.

4.5 More about the superconductivity
After we have been acquainted with the SC

state and the behaviour of charge carriers for this
state, by the BSM analysis of the QHE experi-
ments, we may try to explain one of the observed
effect in the superconductors. This is the effect of
long lasting current loop. 

It is well known fact, that if a current is in-
duced and allowed to flow in a closed loop inside
the superconductor, it continues to flow infinitely.
The necessary conditions for such state are a low
temperature support and a lack of external magnet-
ic field, which may disturb the current flow.

From the QHE experiment analysis we
found, that the sample could get refractive index
below unity, when CL domains with enough low
ZPE are created. In §4.2.1 it was explained why the
SC carriers are localised in the zone of penetration
depth of the superconductor. In this zone the ZPE
gradient is large. So it may always happens that
some CL domains in this zone obtain a quantum re-
fractive index equal to this of the external space
(unity in air and vacuum). 

  or                           (4.32)
The depth from the surface at which the con-

dition (43.2) is satisfied determines the penetration
depth. This is illustrated in Fig. 4.28.

νSPM

νSPM∗

ni
2 ppr

n'
-------= ni

ppr
n'

-------=

ni 1/ν=

νc

2νc

3νc

ni next 1= = c∗ c=
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                             Fig.4.28
       Penetration depth in function of temperature 
       gradient and bulk temperature

The bottom part of the figure presents a trans-
versal section of the superconductor, where the
darker area corresponds to a lower ZPE and the
lighter one - to a higher ZPE of the internal do-
mains. The temperature dependence as a function
of the depth, referenced to the surface at different
bulk temperatures, as a parameter,  is shown in the
top of the figure. The shape of the curve near the
surface is exponential. The relation between the
three bulk temperatures is  . The pene-
tration depth denoted as , corresponds to a point
of the curve in the exponential part. This gives a
possibility the condition (4.32) to be satisfied for
range of temperatures. In such case the penetration
depth will vary with values  . The dimension of
the CL domains, for which the condition (4.32) is
satisfied determines the channel width . The
channel may have not straight shape due to the had-
ron density nonuniformity. It however obtains a fi-
nite width, despite the exponential ZPE gradient,
due to the tendency of the MQ’s to congregate in
magnetic protodomains. The exponential gradient
of ZPE in the same time provides a direction of the
induced magnetic field of the moving carrier to es-
cape the superconductor. So the motion of the car-
riers is accompanied with external magnetic
field.

It became evident, from the QHE experi-
ments, that the carriers of the SC state are single or
stacked SC electrons and they have a tendency to
move with velocity corresponding to the optimal
confined velocity of the electron. This means, that
the single and the stacked electrons are moving
with the same velocity. Due to their common inter-
action they moves in eshellons, as we saw by the
Aharonov - Bohm oscillations. In such case, their
proper oscillations are phase synchronised. This
gives a strong magnetic filed, that is directed to the
external space. The interaction of the moving es-
hellons with the sample nodes is small due to the
hidden charges, but their guiding properties are
preserved. In the same time the carriers carry huge
intrinsic mass in their internal rectangular lattices.
If we take this mass into account and apply the
mass energy balance principle, we will see, that it
could balance a large intrinsic energy. This energy
is mainly concentrated in the strong magnetic
field in the external space around the supercon-
ductor.

Let suppose, that the current flow velocity is
deviated by some internal factor. This is equivalent
to deviation of B from the point of the synchronised
quantum effect in the QHE experiments. The large
energy balance of the system “moving carriers - ex-
ternal magnetic filed” has enough momentum in
order to return the velocity to its previous value.
The stabilization mechanism involves the internal
quantum effect and the automatic self adjustment
of the penetration depth.

So we see, that the induced current in the
superconductor is able to flow infinitely, due to
the large intrinsic energy balance. The necessary
conditions for this effect are only the lower temper-
ature to be in a finite range and the lack of external
opposing magnetic field or energy dumping.

The properties of the low energy CL domains
in the superconductor will become more apparent,
when the reader is acquainted with the atomic nu-
clear structure in Chapters 6 ,7 and 8 and its influ-
ence to the solid crystal structure.

Tb1 Tb0 Tb2< <
λ

∆λ±

δ
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