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Chapter 7.  Hydrogen atom
The Hydrogen atom is a dynamical system

composed of one proton and one electron. The in-
ternal structures and individual properties of both
particles were discussed extensively in the previ-
ous Chapters 3 and 6. The analysis of the dynami-
cal properties of the Hydrogen atom, is very useful
for understanding the structure and dynamical
properties of other atoms.

7.1 Proton as a nucleus of the Hydrogen atom
The proton is a TTH1

3:+(-), a twisted closed
loop helical structure (with external shape like the
digit 8) enclosing a pair of internal pions and one
kaon. Its internal structure was shown in Fig.
2.15.B. The proton shape (illustrated in Fig. 6.22 of
Chapter 6) is shown again in the figure below. 

                         [Fig. 6.22]
                      Proton shape

The proton core is a three dimensional curve,
whose plane projection is given by the Hippoped
curve at parameter . The analytical expres-
sions of the Hippoped curve (in polar and Decart
system) were given in Chapter 6 (Eq. 6.54.a and
6.54.b). The plot of this curve with some specific
dimensions, is shown in Fig. 7.1. We may call the
two portions of the curve proton clubs. While the
real proton clubs do not lie in a plane but in a slight-
ly curved surface, we may call this surface a quasi-

plane. It is slightly curved, because the core length
to thickness ratio of the proton (also the neutron) is: 

                                Fig. 7.1
 Projection of the proton core on a 2D plane

 The dimensions of the proton core, deter-
mined in §6.12.2.6 are following:

    (m)    - proton length      (6.76)

   (m)   - proton width       (6.77)

 (m) - core        (6.78)
                                                  thickness

   (m)   - core length                 

The ratio between the length and width of the
curve for the accepted parameter  is 3.4643.
There are two characteristic points in the proton
quasiplane, shown in Fig. 7.1 as L1 and L2. They
are located on the horizontal axis passing through
the geometrical centre and corresponds to a maxi-
mal vertical width. The distance between them is
0.648Lp. These points, called locuses, are charac-
teristic points for the distributed proximity electri-
cal field of the proton.

7.2 Bohr surface of the Hydrogen atom

7.2.1 Proton electrical field
The proton core structure was described in

details in Chapter 6. The positive charge is contrib-
uted by the RL(T) of the external shell. Having in
mind the finite dimensions and shape of the proton
core, the electrical charge in the closed field is dis-
tributed over the external shell. The unit electrical
charge is a result of the IG energy balance between
the RL(T) structures of the proton’s helical struc-
tures and the surrounding CL space. In the far field
the electrical lines appear radial to the geometrical
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BSM Chapter 7.   Hydrogen atom
centre of the Hippoped curve and their density dis-
tribution simulates a point charge. In the near field,
however, the electrical lines are curved with a spa-
tial configuration determined by the proton core
shape. Consequently, when approaching the proton
from the far field, some boundary range should ex-
ist, beyond which the straight radial electrical lines
are converted to curve lines. We may approximate
this boundary range with an equivalent surface.
Outside of this surface, the proton will look like a
point charge particle, possessing the Newtonian
mass of the proton. So it should be a closed surface.
Inside of this surface the proton’s electrical field
will not converge to a point charge but to the proton
core (Note: the proton core should not be confused
with its internal core. The proton core is the exter-
nal enclosure of the twisted helical structure of the
proton, which thickness is ).

7.2.2 Relation between the BSM model of the 
Hydrogen atom and Bohr model

The Quantum mechanics is successfully built
on the concept of the Bohr model of the Hydrogen
atom. According to BSM theory, the Quantum Me-
chanical (QM) models of the Hydrogen and other
atoms are good mathematical models, providing
very useful quantum features. However, they could
not serve as physical models of the atomic struc-
ture. The main discrepancy comes from the ab-
sence of CL space parameters and the structural
features of the elementary particles in the QM
models. The goal of the BSM theory is to provide
exact physical model of the Hydrogen and other at-
oms. One useful parameter, that the BSM model
will use from the Bohr model is the Bohr radius,
denoted as ao. The proper use of this parameter will
provide an useful bridge between the quantum
model of the atoms and the BSM physical models.

In §3.12.2 the parameter ao was determined
from the conditions defining the quantum orbit
length ( Eq. (3.43.f) and (3.43.g). In the same time
ao is determined by the Bohr model of the Hydro-
gen atom. 

                                            (7.1)

Then we have:
 

                                   (7.2)

 The left side relation is from the Bohr model
of Hydrogen, while the right side is related to the
quantum orbit equivalent radius for electron quan-
tum motion with first harmonic velocity. Based on
the ao parameter, the Eq. (7.1) provides very useful
relation between the CL space parameters, the
Plank constant and the unit charge. Multiplying the
nominators of relations (7.2) by , we obtain rela-
tion valid for the first harmonic quantum orbit,
whose length is equal to .

                        (7.3)

The ground state orbit in Bohr model defines
a shperical surface around the point like proton
with radius ao. The proton shape according to BSM
is quite different, and the ground state orbit will de-
fine a surface different than sphere.  The equiva-
lence of Eq. (7.2) and (7.3) allows us to use the
spherical surface area, defined by the radius ao, as
a modified characteristic parameter of the quantum
orbit condition. In  such case the radius ao provides
a bridge between  the Bohr and the BSM model of
the Hydrogen atom.  In order to preserve (at  least
approximately) the relation to the Bohr model, we
will make the area of the equivalence surface of the
BSM  model to be equal to the area of the spherical
surface defined by the Bohr radius. We may call
the equivalence surface, used in the BSM model, a
Bohr surface, in order to emphasize the relation to
the Bohr radius ao. Then the right parts of the rela-
tion (7.3) could serve as one of the definition pa-
rameters of this surface. It is written separately as
Eq. (7.3.a).

                                 (7.3.a)

The parameter  is valid for free CL
space not disturbed by E-field. So it is satisfied out-
side the the boundary region, that defines the Bohr
surface, but we may consider that it begin to be sat-
isfied at the boundary region.

The other definition parameter of the Bohr
surface is dictated by the shape of the proton or
more accurately said - its proximity electrical field.
The latter possesses a spatial configuration de-
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fined by the proton shape and enclosed inside of
the Bohr surface in case of orbiting electron.

In case of single proton without an electron (a
positive ion) its electrical field breaks the Bohr sur-
face. In this case the proximity field distribution is
still preserved, but outside the Bohr surface the
electrical lines are rearranged. So from outside, the
proton (ion) appears as a point charge.

Summary:
• The Bohr surface is an equivalent boundary

surface around the proton, with a shape of
ellipsoid.

• The area of the Bohr surface is equal to the
area of the  sphere with a radius ao. 

• The spatial orientation of the Bohr surface is
defined by the spatial orientation of the pro-
ton core

• The Bohr surface around the proton is
implicitly defined by the CL space parame-
ters  and .

• In case of orbiting electron the proximity E-
field is enclosed inside the Bohr surface.

• In case of single proton (or ion) the E-field
breaks the Bohr surface. The external E-
filed lines in this case are radial to the geo-
metrical centre and simulate a pointlike
charge particle.

• The shape of the Bohr surface could be mod-
ified. This freedom is given by the definition
condition Eq. (7.3).

The position of the Bohr surface around the
proton is illustrated by two sections, as shown in
Fig. 7.2.

                                  Fig. 7.2
       Bohr surface around the proton
1 - proton core, 2 - Bohr surface section along the 
proton length, 3 - Bohr surface section across the 
proton width, passing through one of the locuses

The quasiplanes of the proton clubs are
shown shaded. The two locuses are denoted as L1
and L2. 

In order to determine the ellipsoid axes of the
Bohr surface we need to know the E-filed lines dis-
tribution inside the surface. Their spatial distribu-
tion is determined by the twisting characteristic
angle θw of the external proton shell and the overall
shape of the proton. It is more convenient to
present a section of equipotential surfaces inside
the Bohr surface. The curved E-filed lines should
intercept this these surfaces at right angle. A possi-
ble configuration of the equipotential surfaces in a
section passing through one of the locuses is shown
in Fig. 7.3.

                                Fig. 7.3
          Section of equipotential surfaces inside
          the Bohr surface

One possible way to determine the Bohr sur-
face parameters is to fit quantum orbits around the
proton core, taking into account the equipotential
surfaces in all possible sections.  In a first gland this
is a complicated task. However, we know the shape
and length of the proton core and the length of the
quantum orbits. Then we could make models of
quantum orbits around the proton core with possi-
ble shape. One helpful rule in the search for the cor-
rect shape is, the following:
• the motion in the quantum orbit should be 

characterized with a minimum energy loss. 
This condition is fulfilled, if:

•  the trace of the quantum orbit intercepts the 
E-filed lines inside the Bohr surface at one 
and a same angle.

In the following analysis we will see, that the
second condition may not be fulfilled for the whole
orbit trace, but for larger or smaller part of the orbit.

λSPM α
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The strength of the quantum effect  is dependable
of this condition.  It will become evident, also, that:
• The quantum effect becomes stronger when 

the interception angle approaches the twist-
ing angle:  (discussed in 
Chapter 6).

The criterion for the correctness of the quan-
tum orbit shape will be the electron energy, corre-
sponding to the quantum number. The electron
energies for the consecutive quantum orbits will
corresponds to the energy difference between the
neigbouring spectral lines in one series. Such mod-
el is developed for the Balmer series of the Hydro-
gen atom. It is presented in §7.8.

7.3 Coulomb force inside the Bohr surface
It is evident, that the distributed positive

charge of the proton inside the Bohr surface will
provide different interaction conditions between
the electron and proton, when the electron is inside
of this surface. The inverse square dependence of
the Coulomb forces from distance is not any more
aplicable in such conditions. In order to find the
modification of the Coulomb force law inside the
Bohr surface we will make analogy with the optical
radiation. For this purpose we will take example  of
a point light source and a point like detector as il-
lustrated in Fig. 7.4. The source and detector, both
have the same angle of view. The point source illu-
minates a screen, the distance from which is fixed
and shown as rref. Let consider that the screen is
made of micro corner cube tape, having the proper-
ty to reflect the rays at same incident angle (the
road signs are covered by the same type of tape).
This will closely simulate a feature of E-field lines
coupling between the point like electron and the
distributed E-filed lines of the proton. The case a,
b, c, corresponds to three different distances of the
detector from the screen. The illuminated area is
denoted as As and the pick up area by detector  - as
Ad.

In case a. the distance between the detector
and the screen is larger than rref. This corresponds
to an electron outside the Bohr surface. It can’t pick
up all the electrical field lines of the proton. The
picked up signal is inverse proportional to the
quadrature of distance r, normalized to rref. So this
is a classical law of Coulomb forces.

                            Fig. 7.4
 
In case b. the detector field of view covers ex-

actly the illuminated surface As. This corresponds
to an electron positioned at the Bohr surface. All E-
filed lines of the electrons are connected to all E-
field lines of the proton. This is possible if the
electron velocity is not very large.

In case c., the picked up signal is proportional
to the square of the distance r, referenced to rref.
This dependence is valid only for the range

. This case corresponds to an electron in-
side  the Bohr surface. In such conditions the elec-
tron’s E-field lines are not able to be
interconnected to all E-field lines of the proton,
because the proton’s E-field lines emanates
from a comparatively large proton core enve-
lope surface.

 The above considerations could not be valid
at very close distance to the proton core, because
the effect of the twisting IG field in the vicinity of
the proton and electron external shell will predom-
inate. This may give some increased repulsion in
very close distance. Such effect will assure a safe
minimal gap between the hardware helical struc-
tures of both particle, which is one very important
feature for keeping their internal RL(T) structures
from destruction (see §6.4.3 Chapter 6). 

 According to the provided analysis the Cou-
lomb force inside the Bohr surface could be pro-
portional to the term:  . 

θw θeff
lept 28.762   deg= =

0 r rref≤<

q2

4πεo
------------r2
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Outside of the Bohr surface the atom is neutral, for
all series, including the Balmer one. This means,
that the whole charge of the proton participates in
this term. For the circular sector of orbit around one
proton core, however, we may consider, that the
electron interacts with half of the E-field lines and,
the corresponding force will become proportional
to .

The shown above term should be normalized
to a reference distance, corresponding to rref in the
analogous optical example. It is not difficult to
guess, that this reference distance is the Bohr radi-
us, ao. It connects the CL space and the electron
system parameters: h, , q, me, according to Eq.
(7.1). Normalising to this distance, we get the equa-
tion of Coulomb force between the proton core and
the electron in the circular section of the orbit,
which is inside the Bohr surface.

                                      (7.3.b)

where: r - is the distance between the proton
core and the electron in the circular part of the or-
bit.

7.4 Orbital planes for the Hydrogen series.
We will consider here only the orbits,

which are related to emission or absorption of
photons. 

The possible orbits are three dimensional
curves and in fact could not define a surface, but we
may define an equivalent surface, so the average
distance of it from all orbital points (for small time
intervals) to be a zero. Then such surface will have
a twisted shape, so we may call it an orbital quasi-
plane. One orbital quasiplane is defined by one or-
bit, but large number of orbits may have a common
orbital quasiplane. One spectral series of the Hy-
drogen atom, for example, corresponds to set of or-
bits with common orbital quasiplane.  The limit of
the series corresponds to the largest orbit of the
set, called a boundary orbit. It will be shown, by
the model of the Balmer series, than the number of
orbits in the series is limited. The electron kinetic
energy, in the boundary orbit can be determined by
the limit energy of the corresponding spectral se-
ries. Knowing the length of the boundary orbit as a

quantum orbit, the quantum velocity can be deter-
mined. In such way it can be verified, that the
boundary orbit is a quantum orbit.  Consequent-
ly, we may determine the length of the boundary
orbit for any one of the series, using  the condition
of the quantum orbit.

The equation of the quantum orbit trace
length was derived in §3.12.3 (Eq. (3.43.i)

                              [(3.43.i)]

where: n is the subharmonic number of the quan-
tum orbit

The positions of the orbits are referenced to
the proton core geometry. Then it is more conven-
ient to use the ratio between the quantum orbit trace
length and the core length of the proton. For a
quantum orbit corresponding to a first harmonic
electron velocity, this ratio is:

                            (7.4)
The ratio (7.4) is very close to a whole

number and we may use integers, for convenience,
neglecting the small fractions. In §3.12.3 it was
mentioned, that subharmonic quantum loops are
able to be connected in series, forming in this way
a common quantum orbit. We may call such orbit a
serial quantum orbit. Table 7.1 shows the ratio
calculated for different subharmonic numbers, n,
and for both types of orbits: single and serial. The
ratio is rounded to integer or close fractional num-
bars for convenience.

 
  Possible quantum orbits according to the
   approximate ratio                 Table 7.1
===========================================
  n      single             serial quantum orbit comprising: 
         quantum      ------------------------------------------------------
         orbit           2 loops   3 loops   4 loops   5 loops   6 loops
-------------------------------------------------------------------------
 1         2                   
 2         1                 2              3              4 
 3        1/3              2/3            1            4/3            5/3         2
 4        1/4              2/4           3/4            1             5/4        6/4
 5        1/5              2/5           3/5          4/5              1         6/5
 6        1/6              2/6           3/6          4/6             5/6         1
-----------------------------------------------------

Different subharmonic number means a dif-
ferent quantum velocity of the electron. The selec-
tion rule for a proper orbit is additionally
influenced by the IG forces. For this reason a mod-

q2

2πεo
------------r2
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q q/2( )
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ao
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el involving the balance between all forces is nec-
essary. Such model is developed for the Balmer
series. Based on this model and additional consid-
erations of orbits in other atoms, the orbital quasi-
planes of Lyman and Balmer series are identified
with a high degree of confidence. The boundary or-
bit for the Lyman series correspond to ratio 2,
while for the Balmer series - to ratio 1 (according
to Table 7.1).

 Figure 7.5 shows the position of the bounda-
ry orbits of the  Lyman and Balmer series refer-
enced to the proton shape. They define also the
orbital quasiplanes.

The boundary orbits for the higher order Hy-
drogen series may occupy the same orbit as the
Balmer or the Lyman series. Below the boundary
orbit however, the higher order series may have se-
rial orbits (the latter option is not enough investi-
gated by BSM).  (For atoms with higher Z number,
the Lyman quansiplane becomes less accessible
and the Bohr surface becomes distorted). 

                             Fig. 7.5

We see that the orbital quasiplanes of Lyman
and Balmer series are quite distinguishable one
from another. The orbital quasiplane determines
the positions of many quantum orbits, but the
boundary orbit is the largest one. It is reasonable to
accept that the boundary orbits of all possible
quasiplanes are inside the Bohr surface, so in all
this cases the Hydrogen atom appears as a neutral.
The electron may change also the orbital quasi-

plane if getting or losing a large amount of energy
due to some  elastic collision of the Hydrogen with
another molecule. The probability of quasiplane
change in a spontaneous emission however is much
lower than changing of the quantum orbit in the
same orbital quasiplane. We may consider, that in
the process of  ionization, the lost electron has been
in one of the possible quasiplane. It is reasonable to
consider that atoms with Z >1 may also have con-
ditions for different orbital quasiplanes as the Hy-
drogen. However, the possible quasiplanes are
dependent of the proton and neutron arrangement
in the nucleus, as this will be shown in Chapter 8
and the Atlas of the atomic nuclear structures. In
any case, however, the ionization is possible.

Figure 7.6 illustrates the possible shape of
boundary orbits for higher hydrogen series.

                                   Fig. 7.6
Possible shape of boundary orbits for the
Hydrogen series of higher orders

The existence of more than one boundary or-
bits, could be explained also by the flexibility of E-
field refurbishment that may modify the shape of
the Bohr surface. We may assume that the Bohr
surface have a constant area of  but a flexible
shape, depending of the working orbits and the in-
terconnection of the proton to other protons in the
atomic nucleus. Below the Bohr surface, the E-
field possesses a spatial structure, confined to the
proton shape and the characteristic twisting angle

 of the E-field line emerging from the proton’s
core. The circulated electron in the orbit intercepts
most of the E-field lines at constant angle. In the
Bohr surface region this condition (intercepting E-

4πao
2

θw
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filed line angle) is disturbed. In the same time the
electron possesses a finite momentum even at the
Bohr surface (this is shown later in the Balmer
model). Consequently, the electron is able to es-
cape from the boundary orbit, if the momentum is
large enough.

Below the boundary orbits are all orbits con-
tributing to the series, terminated with the ground
state orbit. 
• According to BSM, every series has its own 

ground state orbit, which is the shortest one. 
This conclusion will be demonstrated for the

Balmer model.
The quantum conditions defining the stable

orbits are discussed below. 
We may use the term orbital for all orbits in

one series. Although we have to keep in mind that
it does not correspond to the term orbitals used in
the quantum mechanics (where they are defined by
the wave function). We see also that the orbital
quasiplanes are curved but open surfaces. The elec-
tron transitions between any two orbits are in one
orbital quasiplane. The passing of the electron from
one to another orbital quasiplane requires special
conditions and is less probable.

From the considerations presented so far and
from the further analysis we can formulate the fol-
lowing physical rules for the orbits:
• The orbits for all line series are inside the 

Bohr surface
• Any orbital quasiplane, related with photon 

emission or absorption, intercepts one or two  
proton clubs

• The boundary orbits approach the zero level 
potential 

7.5 Effect of the orbiting electron on the atomic 
motion in CL space.

It is evident that the electron trajectories re-
side in the orbital quasiplane.  The latter is an open
surface and could not affect the static pressure of
the CL space exercised on the protons and  neu-
trons, and consequently - the atomic mass. Al-
though the orbital momentums of the electrons
could affect the atomic motion in the lattice space,
causing a spin rotation. For a simple physical anal-
ogy the orbital’s twisted quasiplanes behaves as a

fins of mechanical object, causing a rotation of this
object when moving in a fluid.

Let considering a neutral Hydrogen atom,
moving with constant velocity.  The most probable
orbit is the ground state. The electron has its own
momentum that defines the orbital momentum. But
in order to keep this momentum in the Hydrogen
motion, the interaction with the lattice should be
minimal. Then the Hydrogen has to rotate with
some confined spin because the orbital shape is
twisted. In result of this motion, the electron could
make transitions between very close orbitals. So it
may pump the CL space with very low energy, that
could be periodically emitted as a low energy pho-
ton. The input energy for such emission may come
from the equalization of the zero point energy of
the CL space. Such radiation will contribute to the
Cosmic Microwave Background, corresponding to
the temperature of 2.72 K. It might be contributed
not only by the  Hydrogen atoms and molecules,
but from other atoms and molecules, as well. The
motion behaviour of such atom or molecule will
simulate a “flying bird” but with simultaneous ro-
tational motion.

From the detailed atomic nuclear structure
discussed in Chapter 8, we will see that many as-
pects of Hydrogen orbital structure are preserved in
the atoms with higher Z number. 

Summary
• The orbital momentum affects the proton 

confined motion in CL space

7.6 Quantum motion of the electron in electrical 
field. Quasishrunk CL space.

 The ionization energy of the Hydrogen atom
is 13.6 eV corresponding to the optimal velocity of
the electron. Consequently, all orbitals velocities
are of suboptimal type. The quantum motion for
such velocities was analysed in §3.9. The analysis,
was provided for CL space without external electri-
cal field. In Hydrogen atom, however, all orbits are
inside the Bohr surface, where the electrical field
has a specific spatial configuration, defined by the
proximity field of the proton and the proximity
locked field of the neutrons. Let denote a CL space
without external electrical and magnetic field (oth-
er than the electron own fields) as a free CL space
and the CL space with an external E-filed - as a E-
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field CL space. Then we may distinguish two cas-
es of the electron confined motion: 

(a) electron motion in a free CL space
(b) electron motion in a E-field CL space
The case (a) was analysed in Chapter 3. The

quantum motion of the electron is defined by the
CL space parameters. Between them are the Comp-
ton wavelength, , which is defined by the
SPM frequency and the light velocity.  For a free
CL space we have , where,  is the
first proper frequency of the electron system (elec-
tron shell - positron). In the end of §2.11.2.2 it was
discussed, that the stationary EQ of the CL
nodes may posses higher resonance frequency,
than the MQ node. This automatically means that
they will have a higher SPM frequency (a higher
SPM frequency for CL space with not changed
node distance means a shorter SPM cycle and a
shorter propagated SPM phase, i. e. a shorter SPM
wavelength  in comparison to the free CL
space).

                             (7.5)
where: the prime sign denotes the corre-

sponding parameter in the E-field CL space.
It is apparent from Fig. 7.5 that the Balmer

quasiplane is much less twisted than the Lyman
one. This makes Balmer orbits more convenient for
analysis. The electron orbits for Balmer series oc-
cupy the range between the proton core and the
boundary orbit. Around the proton core, their traces
tend to follow the equipotential curves as illustrat-
ed in Fig. 7.3.

 According to the derived rule for the inter-
ception angle between orbital trace and E-field
lines (see §7.22), it follows, that there is a tendency
of keeping a constant value of this angle with vari-
ations within a limited angular range. Consequent-
ly, the condition (7.5) will be more or less valid for
the motion in any one orbit below the boundary
one. In the same time, the electron proper frequen-
cy  is unchanged, because the electron system
possesses own internal energy. While the E-field
does not affect the CL space node distance, it af-
fects the SPM wavelength, making it shorter. But
the SPM wavelength is a specific quantum param-
eter of the CL space influencing the the light prop-
agation and the electron quantum motion. So if the
electron velocity is estimated by the node distance,
the quantum velocity appears smaller, the follow-

ing the shorter . In the Balmer orbits model,
presented in the next paragraph, it is accepted, that
in the E-field CL space inside the Bohr surface,

 changes linearly with the radius of the circu-
lar part of the orbit. In this case, the obtained results
of the model are optimal. The figure of merit is the
shape of the calculated energies corresponding to
the Balmer series spectra. The linear dependence
may be a result not only of the proton E-filed con-
figuration below the Bohr surface, but also of the
magnetic field lines caused by the electron motion
and oscillation.

The reduced  value (shrinkage) of 
and the orbital length dependence on it gives a
possibility the space below the boundary orbit to
contain a larger number of orbits.

The shrinkage of the  inside the Bohr
surface complicates the analysis, because the quan-
tum scale becomes different. In order to solve this
problem, we may consider, that the quantum
space is quasishrunk. The term quasi is used, be-
cause the CL node distance is not changed and the
proton’s dimensions - also, but the shrinkage is val-
id only for the quantum conditions. In order to keep
this into account, we have to translate the necessary
parameters to the scale of the quasishrunk quantum
space, i. e. to  (the prime is used to denote the
shrunk value of the parameter). The field forces
and inertial momentum also has to be referenced to
this scale. In such case, the inertial mass of the
electron referenced to  scale  will be affect-
ed. When analysing the motion in the circular part
of the orbit, the apparent inertial mass will ap-
pear larger, because the electron intercepts small-
er number of nodes per . We may test a linear
or a quadratic dependence of the apparent inertial
mass in function of orbit length (or distance from
the proton core). The quadratic dependence, which
is a symmetrical function of the Coulomb force in-
side the Bohr surface provides better results in the
Balmer model.

The quasihrunk quantum space affects not
only the electron motion but the quantum waves as
well. The internal space inside the Bohr surface be-
haves as an optical media with gradual index
change. In such way, it affects the propagation of
the quantum waves in the X-ray range. This behav-
iour is discussed in Chapter 8. Consequently, we
may accept that the space is characterised with a

λSPM

νSPM νc νe= = νe

λSPM'

νSPM' νSPM     or    λSPM' λSPM<>

νe

λSPM'
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gradual refractive index. This refractive index is
valid only for electron motion at proper orbits and
for incident quantum wave falling at proper inci-
dent angle.

The static pressure is from all direction forces
exercised on the FOHSs, valid also for the electron.
According to this formulation, the static pressure in
E-field CL space should not be changed, because
the average node distance is unchanged. Then the
electron system parameters are preserved. This is
valid also for the fine structure constant, estimated
as a ratio between the tangential and axial velocity
of the electron.

Summary:
• In E-field CL space, the SPM wavelength 

along the equipotential curves is reduced
• The electron performing a quantum motion 

in equipotential curve exhibits increased 
apparent inertial mass, if referencing its 
motion to the quasishrunk quantum space 

• The refractive index of the quantum qua-
sishrunk space is valid for electron motion at 
proper orbit and for incident quantum 
waves falling at proper angle in respect to 
the proton club quasiplane.

7.7 Quantum orbit conditions for orbits inside 
the Bohr surface.

7.7.1 Quantum conditions, related to the orbital 
length

The quantum loop was defined in §3.12.2
based on the matching the energy conditions be-
tween the Bohr model and the BSM model of quan-
tum orbits.The quantum loop is a closed loop
trajectory of the electron moving with confined
velocity. The loop trajectory length is defined by
the condition of  whole number of carrier oscil-
lations. 

The number of electron’s full rotations in the
quantum loop of electron with first harmonic quan-
tum velocity (13.6 eV) was define in Chapter 3 by
the equation

                        [(3.43.h)]

We see, that the value is very close to
18778.333(3). The difference is only (1.53E-4)%
and might be a result of small error in the experi-

mental estimation of the fine structure constant  .
Having in mind that the second proper frequency of
the electron system (the internal positron - central
core frequency) is 3 time higher we see that for one
quantum loop it make a whole number of cycles:

   cycles of  positron-core
The obtained phase repetition conditions

could be considered as a shortest orbital time con-
dition, valid for a first harmonic quantum orbit.

The next condition for a phase repetition of
both proper frequencies is for 3 orbital cycles. It
will contain 56335 full electron rotations or 169005
cycles of the internal “positron-central core” sys-
tem. The theoretical expression of this condition is:

     where: se is the electron helical step

Let consider now the same effect for a second
harmonic quantum orbit, that is valid for the Balm-
er series. The axial velocity and rotational rate of
the electron are twice slower, but the orbit is twice
shorter than the first harmonic orbit. Therefore, the
time of one orbital cycle is the same and the elec-
tron system possesses one and a same number of
cycles for its two proper frequencies. This condi-
tion is valid also for larger subharmonic elec-
tron motions but only for single quantum loop.
For the higher subharmonic numbers in Hydrogen,
however, single quantum loops does not fit to the
proton structure. Consequently the orbits of the
higher order series (3rd, 4rd, 5th, 6th) are com-
posed of serial quantum loops. 

The condition of the phase repetition is only
the necessary but not enough condition related to
the finite orbital time (a lifetime of exited state). A
second condition causing the dropping to lower or-
bit is from the mismatch between two short mag-
netic line conditions, described later in §7.7.2.

The result for a phase repetition of oscillating
electron was derived for a free CL space, whose
conditions are also valid for the boundary range of
the Bohr surface. If the  below the Bohr sur-
face gradually change, as discussed in the previous
paragraph, the above condition (56335 full cycle)
is still preserved. It is only necessary the cosine be-
tween the negative core oscillation, and the E-filed
lines of the proton to have enough small dispersion
around one mean value defined by the orbital posi-
tion. Keeping in mind, that the E-field are subordi-

2πao
se

------------
λc

αse
-------- 18778.362= =

α

18778.333 3( ) 3× 56335=

3λc
αse
--------

λSPM'
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BSM Chapter 7.   Hydrogen atom
nated by the angle , but are enclosed in the
internal volume enclosed by the Bohr surface, it is
apparent that the condition for quantum orbits
could be satisfied for a spatial range inside that sur-
face.

Consequently the quantum orbit condi-
tions may be valid for large number of orbits,
below the boundary one.

It will become evident from the analysis later,
that the above mentioned conditions are valid for
all the orbits and orbital transitions that provides
line series of the Hydrogen atom.

If the above conclusion is correct, an addi-
tional quantum condition is necessary in order to
provide an individual orbit  separation, correspond-
ing to the different quantum energy levels. 
• The condition for orbit separation is pro-

vided by the magnetic line, aligned with the 
spin axis of the orbiting electron. 

• The above condition is contributed by  the 
spin rotation of the orbiting electron. 

When the electron provides a repeatable mo-
tion in a quantum loop, its spin rotation is an impor-
tant attribute of the motion. The velocity vector of
the rotating electron shell is normal to the orbital
trace, so the magnetic lines from the spin appear
parallel to the orbital trajectory. Having in mind the
radial E-field distribution (see Fig. 3.6, Chapter 3)
and the quantum magnetic radius, we may distin-
guish two separate bundles of magnetic lines
from the spinning electron: peripheral and axi-
al. The peripheral one is related to the quantum
magnetic radius and will have a shape of hollow
tube around the electron shell. The rotating elec-
tron provides a large concentration of magnetic
field lines passing through the axis of its rotation.
This will cause deterioration of the external E-field
of the proton in a narrow zone centered around the
electron orbital trace. Consequently, we may con-
sider that the axially aligned field of of the mov-
ing electron creates a path with  MQs, having
the same SPM frequency as the CL space out-
side of the Bohr surface, where the E-field is
missing. In the same time the magnetic lines in the
peripheral field occupy a larger volume and do not
lead to disturbance of the proton E-field. As a result
of this analysis, we arrive to two important conclu-
sions:

• The peripheral magnetic lines from the spin-
ning electron interact with the E-field CL 
space created by the proton.

• The axial magnetic lines occupy a small vol-
ume space, while the proton E-field in this 
space is deteriorated. The CL nodes in this 
space are of MQ type with a same SPM fre-
quency as the external free CL space.

• The  in the peripheral space along the 
orbital trajectory is shrunk, while in the 
axial space it is the same as in the free CL 
space.

Having in mind, that the magnetic line is a
loop of zero order SPM waves, it is close to the
mind, that its length should contain a whole
number  of . For large size of magnetic loops,
this condition is quite easy to be satisfied. The
same is not true for the size of the electron orbits in
atoms. The whole number of  is enough strong
quantum condition in order to define the stability
conditions for an individual orbit. Therefore, this
could be regarded as a quantum condition related to
the magnetic lines. We may call this quantum con-
dition a short magnetic line condition.
• The short magnetic line condition, provides 

quantum conditions for individual orbit sep-
aration in the series. It is based on the 
assumption, that the length of the magnetic 
line loop should contain  a whole number of 

.
• The short magnetic line condition is valid for 

the peripheral and axial magnetic lines, cre-
ated by the spinning electron.

It is evident, that the individual orbits corre-
sponding to one series fulfil simultaneously two
quantum conditions: the quantum loop condition
and the short magnetic line condition. In the same
time the short magnetic line condition is  valid for
the peripheral and axial magnetic lines from the
spinning electron. Analysing the Balmer model we
will see, that the first one determines the orbits
separation, while the second one defines the fi-
nite time of the electron on a particular orbit. 

Figure 7.7 illustrates the short axial magnetic
line condition for one particular orbit in Balmer se-
ries.

θw

λSPM

λSPM

λSPM

λSPM
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BSM Chapter 7.   Hydrogen atom
                              Fig. 7.7
 Stable orbit defined by the short magnetic line
 condition. The peripheral and axial magnetic lines
 are from the electron spin rotation

 The shown sinosoids along the orbital trace
indicates the whole number of longitudinal ,
in a E-field CL space. They fulfil the short magnet-
ic line condition for the peripheral magnetic lines,
which are induced by the spinning electron. This
condition defines the orbit separation in the Balmer
series. A momentary position of the orbiting elec-
tron and its exploding view are show in the same
figure. The spatial configuration and density of the
peripheral magnetic lines are determined by the
quantum magnetic radius rmq. The rmq radius for
Balmer series is defined by the second subharmon-
ic quantum velocity. While the short magnetic line
condition from the peripheral lines defines the orbit
separation, the same condition for the axial lines
defines the total time duration of the individual or-
bit. This will become evident by the analysis of
Balmer model.

The shape of the orbit shown in Fig. 7.7 is
idealised. The real orbit could be distinguishable in
a way, that the section around the proton core may
not be a perfect circular and the sections between
the circular parts may not be straight lines. Despite
of the accepted simplification, the adopted shapes
of the orbits lead to consistent results of the model.

 

7.7.3 Summary for quantum orbits:
• The quantum loop condition is valid for all 

orbits corresponding to the energy levels of 
one spectral series

• The short magnetic line quantum condition 
provides individual orbit separation in the 
series

• The orbiting electron comply simultaneously 
the both quantum conditions

• The separation of the quantum orbit  into a 
number or orbits is a result of  change 
in function of the distance from the proton 
core, in the E-field CL space inside the Bohr 
surface 

• The phase repetition time of the two proper 
frequencies of the electron is characterized 
by two time cycles corresponding to the 
whole number of the particular cycles.

7.7.4. Electron orbits contributing to the sharp 
spectral lines in the series

The spectral series of the Hydrogen atom are
measured with high accuracy. It is well known fea-
ture, that when approaching the energy limit for
every one of the series, the lines become less distin-
guishable and finally converts to a continuum. The
quantum mechanical model gives explanation of
this effect by accepting  infinite number of closed
spaced levels. The BSM model, however, leads to
a different conclusion:
• The obtained continuum is not from infinite 

number of levels, but from deteriorated 
quantum conditions. Such conditions cause 
some energy variation of the emitted quan-
tum waves that is detected as widen spectral 
line shape. 

Let take for example the Balmer series. Not
all orbits below the boundary one contribute to the
sharp spectral lines. There is a range below the
boundary orbit, where the quantum orbit condi-
tions in E-filed CL space are not well fulfilled. This
is illustrated by Fig. 7.9, where all shown dimen-
sions are in scale. 

λSPM'

λSPM'
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                          Fig. 7.9
         Boundary and limit orbits in the Balmer orbital

quasiplane: 1 - proton core; 2 and 3 - boundary orbits, 4 - limit
orbit. The region associated with          the for sharp line series
is shown by green colour (internal circles) while the region
with smeared lines with a grey colour (external circles)

Two possible boundary orbits are shown:  2
and 3. The both have one and a same length, but the
orbit 3 is more probable for the escaping electron,
while the orbit 2 still passes through the proton
club. The space inside the limit orbit 4 (green area),
is occupied by orbits contributing the Balmer series
spectral lines. In this region large section of orbital
trace coincides or follows the equipotential curves.
(The E-field interception angle of the equipotential
surfaces inside the Bohr surface are not exactly  at
90o due to the characteristic twisting angle  ). In
the region between the limit and boundary orbit
(grey area) the mentioned above condition is not
fulfilled and the quantum orbital conditions are de-
teriorated. This causes an increase of the line width
and appearance of continuum. 

Figure 7.10 shows a shape of orbit from
Balmer series in the region corresponding to the
sharp spectral lines, together with the E-filed lines
around the proton core. The E-filed lines are shown
normal in the circular regions around the proton
core, for drawing convenience, but in the real case
the angle is not exactly   , due to the twisting an-
gle .

 

                                Fig. 7.10
      Idealized orbital shape from Balmer series in 
      the region corresponding to sharp spectral lines.

7.8 Model of the Balmer series
Note: This is an example model with mostly qual-
itative output results. The quantitative results may
not be considered as final, because the model have
more than one adjustable parameters.

7.8.1 Purpose and general considerations
The purpose of the model is to provide some

verification about the correctness of the quantum
orbits concept, developed in the previous para-
graphs. The model is aproximative, because it con-
tains some unknown or partially known
parameters, so there are more than one adjustable
parameters. 

The known parameters are:
(a) proton core and proton width
(b) shape and length of the boundary orbit
(c) shape and length of the limit orbit
(d) approximate shape and length of the

ground state orbit
(e) both quantum conditions at the boundary

orbit
The unknown parameter is:
(g) the inverse power degree of the leaking

(in CL space) IG forces between the proton and
electron structures

Partially unknown parameters:
(h) the parameters of the quantum qua-

sishrunk space inside the Bohr surface
The figure of merit is the correct shape of the

curve presenting the calculated by the model ener-
gy levels of the Balmer series.

It is evident, that the attraction IG force be-
tween the proton core and the electron affects the
electron motion. These forces appears as leakage
IG forces through CL space, so they are not any
more proportional to the inverse cub of the distance

θw

π/2
θw
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(like in a pure void space). The modified IG law
through CL space should appear in higher inverse
order. (see Fig. 2.8.b and the discussion of feature
7 in §2.6.1). In our case we will simulate the IG low
through CL space by using the Newtonian mass of
electron as unit mass and the Newtonian gravita-
tional constant. The attraction IG force is expected
to appear with a large inverse power than 3, be-
cause the leaking IG field in CL space falls faster
with the distance, than the IG field in pure empty
space. Applying the defined above figure of merit
we may obtain the degree of the IG law valid for
the distance range limited by the Bohr surface.

The determination of the parameters of the
quantum quasishrunk space is more controversial.
The space inside the Bohr surface is characterised
by:

- two different regions, as shown in Fig. 7.8,
the region of spectral series and the region of the
continuum

- the region of spectral line could be divided
into two zones: two zones of the circular orbit trace
around the proton core and one middle zone be-
tween them.

We may simplify the problem if deriving pa-
rameters from the orbit lengths and the proton di-
mensions. For this reason  we use idealised shape
of the orbits, estimating  the quantum quasishrunk
factors for the orbits which lengths are known. 

In order to express the orbital dependence on
, it is necessary to introduce a quantum qua-

sishrink factor. If assuming a linear dependence
(that will be confirmed by the results) it is more
convenient to define a quasishrink ratio,  . It is
equivalent to consider, that  is defined  as a ratio
between the λSPM at Bohr surface (corresponding
to a free CL space) and   
at the Balmer Ground State (GS) orbit. Once deter-
mined, we may reference the quasishrunk ratio to
the Bohr surface, where all the CL space and elec-
tron parameters are defined, by the physical con-
stants. The reciprocal of the quasishring ratio is
equal to the gradient refractive index.  The exist-
ence of this index around the proton club will be
discussed in Chapter 8 in connection with X-ray
properties of the solids.

• The quantum quasihrink refractive index is 
reciprocal  to the quasishrink ratio. It could 
be denoted as 

The Bohr surface could not be considered
as a surface with a stable shape. The electron, when
orbiting in different quasiplanes, may cause a dif-
ferent deformation of the Bohr surface. The physi-
cal constants, like h, q, me, νc are valid for the
space outside of the Bohr surface. In order to use
them we have to translate some of the Balmer mod-
el parameters to the Bohr surface. In many cases it
is more convenient to use the Bohr radius or the
length of the Bohr orbit.

7.8.1.A. Aproximative determination of the 
quasishrink ratio for Balmer series

The quantum orbits contributed to the Balmer
series lie on the Balmer quasiplane (now consid-
ered as plane for a simplicity) and occupy the inter-
nal circle regions, shown in Fig. 9.7. It is
reasonable to accept a linear dependence of the
quasishrunk SPM wavelength         in function
of the distance from the proton core. Then the ap-
proximate value of the quasishrink factor could be
obtained by the ratio between the Bohr orbit length

   and the shortest orbit. The shortest orbits is
the ground state (GS) orbit. One factor restricting
the orbital length is the finite distance between the
two proton cores in the Balmer orbital plane. Hav-
ing in mind the requirement for safety margin be-
tween closely spaced FOHSs discussed in Chapter
6, it is reasonable to accept the magnetic radius of
the electron and proton as a second factor. 

. This condition is illustrated in Fig. 7.11,
where req is the magnetic equivalent radius of the
electron for the second subharmonic (see §3.11 and
Table 3.3).

The magnetic radius for the second subhar-
monic was given in Table 3.3: .
Then 

  m
The length of the idealized orbits in the orbit-

al range: GS orbit - limit orbit, is given by the Eq.
(7.6):

    (7.6)

λSPM'

kqs
kqs

λSPM'

nqs

nqs 1/kqs=

λSPM'

2πao

req 2.109 12–×10=

ro Rc rp+( ) Rc req+( )+ 9.89 13–×10= =

Lorb 2 d 1 4r2/d2– r π 2 2r/d( )asin+( ) ]+[=
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where: r- is the orbit distance in the circular
part from the centre of the proton core; d - is equal
to the proton width (given by Eq. 6.77)

.

                          Fig 7.11
       Definition conditions for ro. corresponding 
         to the Balmer GS orbit

The Balmer GS orbit length, obtained by the
conditions of finite magnetic radius is 0.45018 A (1
Angstrom = 10-10 m). The length of the Balmer
boundary orbit is:              (m)

Then the approximative mean value of the
quasishrink ratio, kqs, could be defined as ratio be-
tween both orbits:

 .                                          (7.7)
The quasishrink ratio gives a possibility to

define the change of  in the Balmer orbital
plane as a function of distance from the proton
core. This is used in the next paragraph.

 7.8.2 Concept of the model
The concept of the model is based on the en-

ergy calculation of the possible quantum orbits, re-
lated to the spectral lines of the Balmer series
(without the continuum near the limit). These or-
bits cover the range between the Balmer Ground
State (GS) orbit and the limit orbit (denoted as 4 in
Fig. 7.8). The orbit positions are illustrated by Fig.
7.13. Their shapes are idealized for convenience.
Every orbit contains two circular sectors around the
proton cores connected with tangent lines, passing
through the proton club locus.  The trace length of
such geometrically simplified orbits is given by Eq.
(7.6). 

.

                          Fig. 7.13
          Idealized orbits for Balmer series

Complying the short magnetic line quantum
condition for the peripheral magnetic lines related
with the quantum magnetic radius of the electron,
the length between the neighbouring orbits will dif-
fer exactly by    .

The energy level of all orbits can be estimated
by applying a balance of  forces for the motion of
the electron in the circular sector of the orbit. The
electron velocity in any orbit depends on the intrin-
sic gravitational force, FIG, the internal Coulomb
force, FC, and the inertial force from the apparent
inertial mass. The balance of forces for this region
is given by Eq. (7.8), from where the electron ve-
locity is expressed by Eq. (7.9).

                                        (7.8)

                                    (7.9)

 The Coulomb forces inside of the Bohr sur-
face has been presented by Eq. (7.3.b) where the ar-
gument r is counted from the radius of the GS orbit.
In order to use later the quantum numbers as adopt-
ed by the Quantum Mechanics, we will use a shift-
ing parameter . From geometrical
considerations we may consider that when the elec-
tron circles around one proton club it interacts only
with the half of the proton charge. Using Eq. (7.3.b)
and applying these considerations we arrive to Eq.
(7.10) for the Coulomb force inside the Bohr sur-
face.

                            (7.10)

2πao 3.3249187 10–×10=

kqs 7.385=

λSPM'
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where:  r  - is a running parameter - the dis-
tance of the orbit interception point with OO‘ axes
from the proton core centre (absolute units)

       - is the distance of the Balmer G.S or-
bit interception point with  axes OO‘ from the pro-
ton core centre (see Fig 7.9). In order to satisfy the
quantum condition,  is very close to , but at
distance not larger than one .

(q/2) - is a proton core charge portion affect-
ing the electron motion at point O.

In order to apply the quantum condition for
orbit separation, we have to use  , but it de-
pends of the argument r. For this reason it is more
convenient, to accept a constant , referenced to
the distance of  the boundary orbit and to correct
the argument in the expressions of the IG force, the
Coulonmb force and the inertial force. It is equiva-
lent to work in units of quantum quasishrink space.
Then we can use directly the quantum number of
the orbit.

The inertial mass law in a quasishrunk
space is a controversial problem, not investigated
enough. It was discussed in §7.6. A set of laws are
tested in the model. The best results are obtained
for a square law dependence, when the curve shape
is a mirror image of Coulomb law inside the Bohr
surface (the mirror axis is parallel to the horizontal
axis). So the electron inertial mass dependence on
the distance in the quasishrink space is simulated
by the Eq. (7.11).

               (7.11)

where: ni is the quasishrink index of the zone
around the proton core, assuming that  is a lin-
ear function of the argument r. 

The simulation of the IG forces through the
CL space was discussed in Chapter 2 §2.6, feature
7. The IG forces between the proton core and the
electron are presented as a higher degree inverse
power law between a mass point and a mass bar.
The Newtonian mass of the electron is used as a
mass point, while the proton core - as a bar of such
mass points. One single coil of the external positive
shell of the proton core contains approximately the
same intrinsic mass as the electron. Then the mass
of the proton core can be expressed as number of N
electron masses. Then the differential gravitational
filed, dg, is given by the Eq. (7.12)

   (7.12)

where: L is the length of the mass bar; M is its
intrinsic mass; m - is the point mass for which  g is
estimated; N is the number of mass points, from
which the bar is consisted,  r - is a distance; x - is a
running parameter for integration; and P is the de-
gree of the inverse power law.

The integration on x gives the intrinsic gravi-
tational field, from which the gravitational force is
expressed. The tuning of the model requires precise
adjusting of the power degree. For this reason a nu-
merical integration is preferable.

The bar length is proportional to the number
of mass point. So it is more convenient to replace
N by a length of the bar, L, in order to have one and
a same units of distance.   The parameter L could be
expressed as a fraction of Lpc and  the model could
be tested for different L.  Then we arrive to the ex-
pression of the IG force that leaks through CL
space  in the range between the electron and nearby
proton core.

                       (7.13)

From the Eq. (7.13) we see that the  factor p
after the integration will corresponds to a power
law of degree P, according to the expression (7.14)

                                             (7.14)

Replacing the value of FC and FIG in Eq.
(7.8) we get the velocity in function of distance r.
In all equations the converted mass is included by
its expression given by Eq. (7.11). Now we need to
connect the forces balance condition with the quan-
tum condition of the orbit separation based on the
whole number of  for any orbit length. For this
reason the Mathcad program st_w_qn.mcd is used.
The length of the orbit in function of the distance r
is determined by Eq. (7.6). In this point of the mod-
el, we have two options for applying the short mag-
netic line condition (the magnetic lines induced by
the spinning electron):

(a) - for the peripheral magnetic lines 
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(b) - for the axial magnetic lines 
For case (a), assuming a linear dependence of
 from the radius r in the circular  zone  and ref-

erencing to the  for the boundary orbit, we
have:

                  (7.15)

The curvature of the calculated energy levels
from the model output is very dependable of the
quasishrink ratio kqs. Its value estimated in the pre-
vious paragraph is 7.385, but the model, shows bet-
ter results with a value . Taking into
account the very approximative method for estima-
tion of this parameter such small deviation could be
acceptable. 

For case (b) the SPM wavelength is a con-
stant and is a same as for the external CL space

.
The case (a) and (b) separates the model into

two similar branches. Let following the case (a), as
it is related with the quantum orbit separation.

The length of the quantum orbit expressed as
a whole number of  is given by Eq. (7.16).

                            (7.16)

where: kmin is the number of wavelengths for
the  nearest to the core orbit, but not closer than ro;
n is a principal quantum number; the factor 2 is
for matching the orbit number to the quantum
mechanical principal quantum number for
Balmer series.

 Substituting (7.16) in (7.15) and equating the
result with the Eq. (7.6), we arrive to Eq. (7.17).

    (7.17)

Giving consecutive numbers of n starting
from 2, the corresponding distance r is determined
and discrete value function r(n) is obtained. The
function r(n) is fitted to a curve.

                                         (7.18)
where: ; ; 

The fitting results are shown in Fig. 7.14.

                           Fig. 7.14

Substituting the argument r(n) in all terms of
the Eq. 7.9,  we obtain the electron velocity in
function of the quantum number. The plotted
curve of this discrete value function is shown in
Fig. 7.15.

                           Fig. 7.15
Orbital electron velocity in function of the quantum

number

All spectral lines of the Balmer series are be-
tween 3.4 eV and 0 eV. The velocity in the GS orbit
with n = 2 corresponds to 3.4 eV , while the veloc-
ity of the limit orbit with . corresponds to 0
eV. The plot in Fig. 7.15 shows, that the velocity is
decreasing with the quantum number for the range

 and then slightly increased for . We
may call the first region a region of velocity inver-
sion.  
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The velocity curve is referenced to the GS ve-
locity. This velocity is determined as a second sub-
harmonic velocity corrected by the quasishrink
index :

                                    (7.19)

Where the quasishrink index is inverse pro-
portional to the quasishrink ratio kqs.

The model velocity equation (7.9) should
give the same value for  as Eq. (7.18). For this
reason only the parameter p in Eq. (7.11) is tuned.
The corresponding degree of the inverse power low
of IG forces, is obtained by Eq. (7.14). The plot of
IG forces together with the plot of the Coulomb
forces  are both shown in Fig. 7.16.

                         Fig. 7.16
          Plots of IG and Coulomb forces
          (drawn as continuous plots)
                    
It become evident, that the slight increase of

the electron velocity for , as shown in Fig.
7.15, is contributed by the increased Coulomb forc-
es, as shown in Fig. 7.16. 

Fig. 7.17 shows plots of the Coulomb forces
for two cases: 1 - ; 2 -  (  cor-
responds to the Balmer GS orbit). .

Fig. 7.17. Coulomb forces in function of quantum
number (drawn as continuous plots)

Having in mind that the GS orbit is deter-
mined by the finite distance ro, (see Fig. 7.11), it
becomes apparent, why Coulomb force for 
may not start from zero, but from some finite value.
For this reason, the plot 2 is more probable. It does
not affect significantly the curve shape of the ener-
gy level fitting, but may affect slightly the total or-
bital time, discussed in §7.8.3

The inertial mass dependence on the quantum
number influences the shape of the velocity and en-
ergy levels of the series. The best fitting result is
obtained for a second order inertial mass depend-
ence, given by Eq. (7.11). Expressed in function of
quantum numbers, the plot of Eq. (7.11) is a mirror
image of the Coulomb forces expressed by
Eq.(7.10). The plot of the inertial mass expression
( 7.11) is shown in Fig. 7.18.

                              Fig. 7.18
     Newtonian inertial mass of the electron
      in the E-field quasishrunk space inside
      the Bohr surface (drawn as continuous plot)

Using the obtained expressions of the inertial
mass and velocity as functions of the quantum
number, we may express the electron kinetic ener-
gy  in eV, for any one of the quantum orbits by us-
ing the well known classical equation:

                              (7.20)

The energy levels, according to the quantum
mechanics are the potential energies, but refer-
enced to the limit orbit. So we have:

        (7.21)

Fig. 7.19 shows the plot of the calculated en-
ergy levels, , together with the plot of the en-
ergy levels, ,  estimated by the spectral data.
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                           Fig. 7.19
    Calculated and experimental energy levels
    for Balmer series

The shape of the calculated energies fits quite
well to the levels from the experimental data (quan-
tum mechanical levels). We also see, that we have
referenced the model velocity only for , but
the obtained energy  range spans well for all Balm-
er series.  The small discrepancy between the cal-
culated and the experimental data might be
contributed by:

- using idealised shape of the quantum orbit,
as shown in Fig. (7.9)

- The IG law through LC space is different
than in the empty space. In the former case the
leaked IG forces dependence in close distance is in-
verse proportional to a distance at power larger
than 3. The power index is also dependable on the
absolute distance value.

The Balmer model output parameters for the
best fit,  shown in Fig. 7.19 are following:

kqs = 7.728 - a quasishrink ratio, valid for the
peripheral magnetic lines from the spin momentum
(referenced to Bohr surface) 

Quantum orbits: 37 ( )
P = 5.474 - degree of inverse power IG low
                    through CL space

7.8.2.A Discussions:
The quantum efficiency for pumping the CL

space is not considered in the Balmer model. When
investigating the molecular vibrational spectra in
Chapter 9, we will see, that it affects the CL space
pumping. Then in the Balmer model, the quantum

efficiency will be a hidden parameter. This might
be the reason, why a velocity minimum appears at

. It could be explained by the shape of the or-
bit. At  the orbital shape approaches the Hip-
poped curve with parameter  and the
distance between the locuses of the Hippoped
curve - closer to the distance d (see Fig. 7.13). The
quantum efficiency at such shape of the orbit might
be a maximum. 

The BSM model provides energy levels, con-
sistent to the levels, obtained by the optical spec-
trum (Fig. 7.19). So the velocity concept may be
considered as a correct parameter, including the
quantum efficiency as a hidden one. Then we may
calculate the quantum magnetic radius, by Eq.
(3.39) from Chapter 3. For velocity value of
1.079E4 m/sec corresponding to      we ob-
tain for the small magnetic radius:

 . 
Then the external magnetic radius is:

 
The quantum magnetic radius of the quantum

orbits with lower quantum number is even smaller.
Consequently the quantum magnetic radii for
all orbits of the series are inside the Bohr sur-
face. 

Note: The quantum magnetic radius is esti-
mated by the analysis in Chapter 3, where a repeat-
able motion in a quantum loop is not taken into
account.

The Balmer model unveils one specific fea-
ture of the orbiting electron. When the electron
drops to lower orbit, despite the fact that it obtains
a larger velocity,  its potential energy is lower, due
to the IG forces. When such transition occurs, the
energy difference will be emitted to the external
space as a quantum EM  wave - a photon. Conse-
quently the emitted photon carries a portion of
potential energy, belonging to the IG forces be-
tween the electron and the proton.

The above conclusion is of great importance,
because it is valid for the energy levels of all atoms.
In fact the weight of the IG energy contribution
increases with the Z number of the atomic ele-
ment.

The electron’s geometrical parameters, valid
for free CL space has been used without change in
the model. Consequently, the fine structure con-
stant, which appears as embedded parameter of the
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electron geometry is also not changed inside the
Bohr surface. The both proper frequencies of the
electron as a system are also unchanged. These re-
sults obtained for the volume of the spectral line or-
bits should be also valid for the total volume inside
the Bohr surface.

 Investigating the separate contributions for
the shape of the Balmer plot we may see that the
change of inertial mass could not affect significant-
ly the output result. The main contributors are the
IG field and E-field. The E-field in fact is control-
led by the IG field due to the charge unity mecha-
nism. Consequently:
•  the energy of the orbiting electron is defined 

mainly by the IG energy of the system. 
This feature may be considered valid also for

the heavier atoms where the IG energy of the nucle-
us contributes to the energy of detected emitted or
absorbed photon. (In such aspect the inertial mass
contributes only a small correction on the cenrap-
etal acceleration force).

 The above conclusion is one of the major
distinct parameter between the BSM model and
the Bohr model of the Hydrogen atom. This
leads to the following major distinctions between
both models:

Summary:
• Major distinctions between Bohr model of 

Hydrogen and BSM model:
In the Bohr model, the orbit with a length

of  is the most internal orbit.
In the BSM model, the orbit with a length

of  is the most external possible orbit 
• The spectral line positions in the series carry 

signatures of: the IG filed, the E-field, and 
the electron inertial mass inside the Bohr 
surface

•  The resolvable spectral lines are in the 
range of velocity inversion

• The magnetic radius of the electron for all 
quantum orbits could not appear outside of 
the Bohr surface. 

• The two proper frequencies of the electron as 
a system are not affected by the properties of 
the space volume enclosed by the Bohr sur-
face.

7.8.3 Orbital time
From the concept of CL space pumping and Balm-
er series model it is apparent that the CL space is
pumped during orbital circling of the electron, and
after the electron falls to a lower orbit the pumped
energy is emitted as a photon (quantum wave). The
well determined energy of the photon indicates that
the electron makes a whole number of orbital cy-
cles. This is in agreement with the relation between
conditions of whole number of cycles discussed in
§7.7.1. This relation is shown in the following ta-
ble:
-----------------------------------------------------
Phase repetition      e- rotations                    internal 
condition                                                      positron-core cycles
-----------------------------------------------------
short time           18778.3(3)            56335
long time             56335                  2573380
-----------------------------------------------------

The phase repetition time could be consid-
ered as a necessary but not enough condition for the
finite time of the electron on orbit. In the Quantum
mechanics (QM) this time is known as a lifetime in
activated state. It is a constant for a spontaneous
emission, while it is shorter for stimulated emission
used in lasers. The QM could not provide an expla-
nation of the physical mechanism, that determine
this time. Now the possible explanation could be
given for a first time.

The condition that defines the limit time du-
ration of the orbit according to BSM is reduced to
a possible number of full orbital cycles according
to the considerations of the phase repetition. The
second factor that may influence the possible
number of orbits could be related to the short mag-
netic line condition. This condition is valid simul-
taneously for the axial and peripheral magnetic
lines created from the electron’s motion. While the
axial lines are related with the , valid for the
external free CL space, the peripheral lines are re-
lated with the shrunk  valid for the orbital
space inside the Bohr surface. Obviously both con-
ditions comes in conflict after some finite time
from the beginning (when the electron start circling
in the particular orbit). This could be inferred from
the analysis of the relation between the CL space
relaxation constant and orbital time for the two cas-
es: axial and peripheral magnetic lines.

2πao

2πao

λSPM

λSPM'
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For the axial magnetic lines the CL space
constant is tcl. For the peripheral magnetic lines the
quasishrunk CL space constant follows the same
dependence on the distance from the proton core as
the parameter   given by Eq. (7.15).

The orbital time from the Balmer model is
obtained by division of the orbital length (Eq. 7.16)
by the orbital velocity (plotted in Fig. 7.1). 

                                    (7.23)

Two plots of Eq. (7.23) for short magnetic
line conditions: applied for axial and peripheral
magnetic lines are shown in Fig. 7.20. The time
scale is multiplied by factor of 3 for a reason ex-
plained later.

                             Fig. 7.20
Trend of the short magnetic line conditions in
function of quantum number
1- for the peripheral magnetic lines
2- for axial magnetic lines
The quantum numbers are in the scale
of curve 2, related to the quantum number of the orbit.

We see from the plot that the trends of the two
curves are different. While their relative position
might be influenced by the properly determined
quasishring index, their trends will be always dif-
ferent. But this difference means that a conflict be-
tween the two types of magnetic line conditions
may occur for a finite time of the electron on the
particular orbit. The quantum features of the CL
space and the electron system oscillation may make
the conflict to occur in the time when the oscilla-
tion passes through the initial phase. Then the elec-
tron falls to lower orbit. The most probable lower
orbit is the ground state orbit of the series.

 The provided considerations has to been
combined with the conditions of the phase repeti-
tion between the two proper frequencies of the
electron and the CL node Compton frequency. This
issue has been discussed in §3.12.2.A.

The developed concept is valid for a single
Hydrogen atom only. The obtained lifetime should
not be confused with the cases of long lifetimes for
some atoms or molecules. In the latter cases quite
long lifetimes may result from different mecha-
nisms involving complex interactions between
multiple orbits.

Summary:
• The spontaneous life time is defined by the 

mechanism of the short magnetic lines, 
strobed with the effect of the phase match 
conditions between the two electron proper 
frequencies and the Compton wavelength of 
the CL nodes

• In case of spontaneous emission the lifetime 
of the exited state for Balmer series is equal 
to three orbital cycles of the electron.

• The orbital time could not be shorter than 
one orbital cycle of the electron

• The finite lifetime is a result of conflict 
between axial and peripheral short magnetic 
line conditions, developed for a finite time of 
the electron motion in the proton E-field. 

7.9. Photon emission and absorption. Physical 
explanation of the uncertainty principle. 

Let analyse the electron motion in one orbit
of Balmer series above the GS orbit. The induced
peripheral magnetic lines by the spinning electron
are in the region inside the Bohr surface.  During
the stable motion of the electron, the Hydrogen ap-
pears neutral outside the Bohr surface. Conse-
quently the electron momentum is able to
neutralize the distributed E-field lines inside the
Bohr surface. The CL space interaction will bal-
ance this momentum, so it will contain a balance
energy. This energy is distributed in the orbital
trace, formed by the electron quantum magnetic ra-
dius (see Fig. 7.7). The energy, kept in the vol-
ume swapped by the magnetic radius is possible
due to the shorter refreshing cycle, supported
by the orbiting electron. Due to the finite orbital
time, determined by the short magnetic line condi-

λSPM'

torb n( )
Lorb n( )

V n( )
------------------=
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tion conflict (described in the previous paragraph),
the motion in a given orbit may be terminate by two
possible ways:

(a) the electron falls to lower orbit
(b) the electron jumps to higher orbit, if the

proton club space has received external energy in a
proper time.

Photon emission. The case (a) mentioned
above is related with a photon emission. The termi-
nation of electron motion in the current orbit termi-
nates the volume energy refreshing. The excess
energy is a difference between the electron ener-
gies in the two orbits. This energy distributed in the
former trace is in conflict with the proton E-field
inside the Bohr surface. Now regarding the excess
energy volume as running EQ’s they are pushed in
direction to less intensive IG field (for the line se-
ries, the IG field predominates the E-field). The
running EQ’s carrying an excess energy above the
ZPE, are refurbished in a quantum wave (photon),
with wavelength corresponding to the total excess
energy. The most probable transition to lower orbit
is the transition to the GS orbit of the series. In this
case the conditions of quantum orbit are always
present. This is the case of spontaneous emission.
For any other transition to orbit higher than the GS
additional conditions are needed.

Photon absorption. An electron in a lower
orbit may jump to a higher one, if obtaining an en-
ergy in a proper time, referenced to its orbital time.
This is a process of absorption. The absorption of
photon, also is not instantaneous process. It may in-
volve number of orbital cycles. It is well known
from the quantum mechanics and the experiments,
that the total energy of the photon is transmitted to
one electron. But how the energy of the quantum
wave wavetrain occupying much larger volume
than the proton, is shrunk into the internal space of
Bohr surface? The only possible option is to accept
an energy dumping effect of the combination of
the proton space inside the Bohr surface and the or-
biting electron (in analogy with a dumping effect
for mechanical waves, propagated in a stiff media).
If considering a solid optical detector, the size of
the quantum wave usually covers many protons
with their Bohr surfaces. In order to start the dump-
ing effect, however, the orbiting electron has to
posses a proper phase referenced to the proton club
and matching the quantum time condition. Then

the energy dumping effect selectively starts for one
electron, whose quantum orbit conditions are clos-
er. Once the dumping is started, the whole energy
of the quantum wave is sucked, contributing only
to the energy of this electron. The process is not
simple and may involve number of nonlinear fac-
tors inside the Bohr surface. The intuition for a pos-
sible nonlinear factors comes close to mind if
analysing the experiment described by L. J. Wang
et al. (2000).

Heisenberg uncertainty principle. The
emission and absorption processes are able to pro-
vide explanation of the Hisenberg uncertainty prin-
ciple, applied to the electron motion in the atoms.
It is evident, that emission  and absorption process-
es are related with many orbital cycles.  The both
processes have a finite time duration. The receiv-
ing system, however, will get the energy only at
the end of the process.  In a case of a real detection
system, even with a super fast detector, the de-
tector system will get the energy only when the
electron quits the orbit (the corresponding atom
is ionized). 

CL space pumping. If the electron in GS or-
bit, for example, gets some energy from absorbed
photon, it jumps to a proper higher orbit, but stays
here a finite time and returns back, most probably
to the GS. In this case the same obtained energy is
reemitted. We may regard the process as a CL
space pumping, a terminology, used in previous
chapters. Variety of CL space pumping processes
exist, some of which, have been already discussed.
One of them was the CL space pumping in the pos-
itronium (see §3.17.3). There is one common fea-
ture between both processes of CL space pumping.
In the positronium transition , the emitted
photon energy is . So it is refer-
enced to the common centre of mass in respect to
the fixed CL nodes of the laboratory frame.

In the case of Hydrogen atom, the proton
mass is much larger than the electron one, and the
proton could be considered as a carrier of local
frame. In case of the Ps  transition (see
§3.17.3), both, the electron and the positron are os-
cillating. Their centre of mass, however, is deter-
mined by their different quantum velocities,
corresponding to 13.6 eV and 3.4 eV. They have
one and a same inertial mass but oscillating around
a common centre of mass with different velocities.

13S1 23S1–
13.6 3.4–( )/2 = 5.1 eV

13S1 23S1–
Copyright © 2001, by S. Sarg                                                                                                                                                                 7-21



BSM Chapter 7.   Hydrogen atom
In fact the common centre of mass is not fixed in
CL space, but oscillating. For this reason the
difference between 13.6 and 3.4 eV is additional-
ly divided by two. The physical explanation of this
effect without taking into account the CL space is
not possible.

Some very low energy photons, from the Hy-
drogen emission spectra, also may get physical ex-
planation, when considering the CL space
interaction.  During the photon emission the Hy-
drogen atom gets a kick in opposite direction. Due
to the orbital quasiplane twisting shape, the Hydro-
gen gets simultaneous spin momentum. This mo-
mentum may cause emission of another quantum
wave, with much lower energy. This may explain
the Hydrogen emission at 21 cm coming from the
space.

7.10 Electron spin and fine structure line split-
ting

According to the quantum mechanics, the
electron motion is characterized with two spin val-
ues. Let call this parameter a QM spin, in order to
distinguish it of from the spin momentum, that is an
angular momentum of the electron confined mo-
tion. But what is the physical meaning of QM spin?

The QM spin is initially introduced with pur-
pose to explain the spectral line splitting of the line
series. This splitting is larger for transitions be-
tween orbits with lower quantum numbers. This
feature indicates that the QM spin is related to the
velocity direction, referenced to the proton club
quasiplane. The quasiplane has a twisted shape, de-
termined by the twisted shape of the proton core. It
is enough correct to say, that the quasiplane posses
a chirality determined by the twisted shape of the
proton. This chirality, namely, is a reference point,
allowing two opposite QM spins value to be distin-
guished.  For orbit with one and a same quantum
number the orbiting electron may move in two dif-
ferent directions, distinguished by the proton hand-
edness. Its energy in both cases, however, should
be slightly different. Such energy difference is de-
tected by as closely separated spectral lines. The
separation is larger for orbits closer to the proton
core, because  IG field  is stronger in this region.
This effect is known as a fine structure line split-
ting.  

   All this considerations are valid only in
electron motion in quantum loop, and when the
shape of the loop is defined by a presence of a pro-
ton. For motion in open trajectory away of the def-
inition conditions of the proton, the QM spin losses
a sense. It should not be confused with the electron
system polarization effect, characterized with in-
voked radial motion of the internal positron, after
an electron beam is reflected by a solid surface un-
der angle.

Summary: 
• The QM spin is a physical parameter related 

to the match or mismatch between the chi-
rality of the electron spin rotation and the 
chirality of the proton. 

7.11 Pauli exclusion principle. Magnetic fields 
inside the Bohr surface.

According to Pauli exclusion principle one
orbit could be occupy by no more than two elec-
trons. When the orbit is occupied by two electrons,
they have opposite spin. 

These conditions are reasonable, for all
kind of orbits, passing through the proton club. In
BSM concept the opposite spins means, that the
two electrons circle the same orbit but in opposite
directions. In Balmer orbits they pass simultane-
ously through the proton clubs near the locus.
However they do not collide because:

- the guiding role of the magnetic field and
the repulsion of the E-field of the electrons

- the orbits are pretty close, but not exactly
the same due to the interaction between the axial
spin of the electron and the helicity of the proton.

The motion of two electrons in a common
orbit is illustrated by Fig. 7.21.

The instant positions of the two electrons
become synchronized each other, so in any mo-
ment they have symmetrical positions, referenced
to the quasiplane of the proton club. The instant
symmetry in one particular moment is illustrated in
Fig.  7.21. We see that a kind of symmetry exists
between two electrons in one orbit. This symmetry
in fact is supported by the induced magnetic field.
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                              Fig. 7.21
Instant position symmetry of two electrons
 with opposite QM spin, occupying one quantum
 orbit of Balmer series

It is evident, why the two electrons can’t
possess one and a same spin. The opposite QM
spins allow their magnetic fields from the orbital
motion to be mutual compensated with a symmetry
referenced to the proton club. The magnetic lines of
these fields are normal to the orbital plane. We may
call this field an orbital magnetic field. This field
has a different configuration than the magnetic
field induced by the spin (rotation) momentum of
the electron. In the vicinity of the electron, the
magnetic lines of the both fields are normal each
other and do not interfere. The orbital magnetic
field, however is created in a E-field CL space, in-
side the Bohr surface, where the  is different
than  the    of the external CL space. For this
reason the created magnetic lines may not be
able to make paths outside of the Bohr surface.
Therefore, they are closed inside. This feature ex-
plains the fact that the orbiting electron does not
exhibit external magnetic field. This is valid not
only for single, but also for pair electrons that con-
vert the atom to a negative ion. The negative ion
possesses completely symmetrical charge feature
as the positive one, despite the completely different
dynamics inside the Bohr surface. 

From the above analysis it becomes evident
that similar conditions for more than two electrons
are not possible. Said in a simple way, two elec-
trons “complete” the orbit (according to the Pauli
exclusion principle), because no more than two or-
bits of opposite Quantum Mechanical spin are pos-
sible.

Summary:
• Physical meaning of the Pauli exclusion prin-

ciple: two electrons with opposite QM spins 
posses two individual symmetrical orbits 
with one and a same orbital quantum condi-

tions. Such conditions are not possible for 
more than two electrons, because the mag-
netic field symmetry is disturbed.

• The orbital magnetic field from one or pair 
electrons in the orbit is enclosed inside of the 
Bohr surface, due to the different SPM fre-
quency of the E-field CL space from the 
external free CL space.

• The negative ions does not exhibit external 
magnetic field despite the second orbiting 
electron, for the same reason.

7.12 Superfine spectral line  structure
During the photon emission, the excess ener-

gy kept so far inside the Bohr surface gets a fast es-
cape as an emitted photon. The local gravitational
field of the proton serves as a reference frame. It is
reasonable to consider, that the proton exhibit reac-
tion force during the moment of the photon shot.
Due to its large inertial mass it gets a slight kick. Its
helicity and twisted orbital shape of the circling
electron, converts part of the kick momentum to a
nuclear rotation. The emitted quantum wave have a
finite wavetrain length and consequently a finite
emission time. So the kick effect is able to influ-
ence the photon emission, providing in such way a
small frequency shift, as a red Doppler shift. In the
same time the proton has some left over energy as
a small spin momentum. In some moment this ro-
tational momentum may become in conflict with
the orbiting electron. The atom could free this en-
ergy only as an emission of a low energy quantum
wave. The energy of the emitted in this case pho-
ton, however, depends also on the current status of
the QM spin of the electron. The signature of this
dependence is the superfine spectral line struc-
ture.

In the atoms with higher Z number, the super-
fine structure may have more splittings, due to the
orbital interactions effect. The latter is discussed in
Chapter 8. 

7.13 Lamb shift
In QED the Lamb shift is known as dis-

placement of the GS (ground state) level from its
position, estimated by the difference between the
expected energy level and the real one. This is ob-
servable from Hydrogen to higher Z number of el-

λSPM'
λSPM
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ements. The Lamb shift increases with the Z
number.

Let considering the Balmer series. The or-
bital shape and dimensions of all orbits in the series
with exception of the GS orbit are defined only by
the quantum conditions. Only for the GS orbit ad-
ditional conditions appear for termination of the
quantum loop condition. It is related with the quan-
tum magnetic radius interference with the proton
core (see §7.8 and Fig. 7.11). So it is very reasona-
ble the lowest orbit quantum condition (corre-
sponding to the GS) to appear slightly displaced.
The orbit deformation gives slight shift of the
quantum position, estimated by the Quantum me-
chanical model. The deviation from the exact quan-
tum value becomes observable, because this orbit
is closer to the proton core. In this range the IG
forces are stronger and are proportional of higher
inverse power degree of the distance. For a similar
reasons, the orbit deformation and the quantum
shift for GS orbits in atoms with higher Z numbers
is larger. It is also evident, that the Lamb shift may
appear only for GS orbits near the proton core. This
condition is valid not only the Lyman and Balmer
GS orbits  in the Hydrogen, but also for the corre-
sponding similar orbits in the heavier elements.

 7.14 Zeeman and Stark effects.
The Stark effect is a spectral line splitting as

a result of applied electrical field. The Zeeman ef-
fect is a spectral line splitting as a result of applied
magnetic field. In fact the Zeeman effect could be
also a line shifting. The detection effect may pro-
vide a signature of line splitting as a result of the
following conditions:

- detection of photons from different atoms
- consecutive photon detection from one and

same atom but with different orientations in respect
to the applied field

In order to explain the physical process, we
will use the term line shifting. There are two major
differences between the both effects. In the Zee-
man effect, two different type of shifting are ob-
served: for small and for large intensity magnetic
field. The Stark effect does not exhibit such phe-
nomena. These differences helps to identify the
physical process.

In the Stark effect, the applied electrical field
deforms the shape of the Bohr surface. This may
influence the position of the quantum orbits. The
orbital energy level is very dependent of its posi-
tion, because the strong gradient of the IG field.
The gradient is also larger for orbits with low quan-
tum numbers. 

In the Zeeman effect, the applied magnetic
field could not influence the Bohr surface. The
Bohr surface, by definition, is generated by the
static E-field of the proton and should be not affect-
ed by a magnetic field. The applied magnetic
field, however, may generate magnetic lines in-
side the surface, that could influence the orbital
quantum conditions. The penetrating magnetic
lines may obtain loops closely to the magnetic
fields generated by the orbiting electron. Having in
mind the both quantum conditions, defining the
quantum orbit (see § 7.7.3), it is close to the mind,
that the two types of the Zeeman effect are related
with them: 

(a) caused by low intensity magnetic field
(b) Caused by high intensity magnetic field
The low intensity magnetic field may not in-

fluence the short magnetic line quantum condition,
related with the axial magnetic lines of the electron.
The volume of this field possesses very small
thickness (smaller than the Compton radius).  But
it may affect the quantum loop condition, of pe-
ripheral magnetic lines, whose volume is much
larger.

The higher intensity magnetic field may af-
fect the both type of short magnetic line quantum
conditions. Having in mind, that the SPM frequen-
cies of the applied magnetic field and the axial
magnetic lines  are both equal, the stronger field
may provide a different type of line shifts in com-
parison the weaker one.

7.15 Cross validation of the Hippoped curve 
concept, for the shape and dimensions of the 
proton and the quantum orbits.

Here we will summarize, briefly, the cross
calculations and validations, some of which are
used so far and others - given in the next Chapters.
The knowledge of the shape and dimensions of the
proton, neutron, electron, and the quantum orbits,
is very useful for understanding the structure of the
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atomic nuclei and their physical and chemical
properties.

A. Shape and dimensions of the electron as a 
system of three helical structures with internal 
rectangular lattice (twisted)

- Static and Dynamic CL pressure ex-
pressed by the electron volume and surface, involv-
ing the Compton radius (wavelength) Plank
constant, light velocity and fine structure constant

- Magnetic radius, calculated by the mag-
netic moment the Compton radius and number of
physical constants

- Relation between the electron static
charge and the quasiparticle waves in the beta de-
cay (virtual electron and positron)

- X-ray properties of the electron 
- Electron system modifications and proper

frequencies validation by experimental data of
FQHE

- CL space pumping and proper frequency
validation by the Positronium 

- Electron system modification in Super-
conductivity state of the matter

- Internal gravitational lattice structure val-
idation by the destruction energy (tau lepton at
1.7778 GHz and the resonance at 1.44 GHz

- electron and muon magnetic moments,
mass ratio and their physical meaning

- derivation of relativistic gamma factor by
the dimensions and property of the moving and os-
cillation electron

- quantum motion of the electron and its
confined motion in a quantum, as a property of the
quantum orbit

B. The proton shape and dimensions
- Matching the proton dimensions to the

calculation of the temperature of 2.72K with the
experimentally measured one in which the ideal
gas constant and Avogadro’s number are involved,
together with other physical constants (Chapter 5); 

- matching the mass ratio of the pion to
muon; the magnetic moment ratio between electron
and muon; mass balance equation of the proton (in-
volving all pions and kaon); mass balance equation
of eta particle; stopping ratio between proton and
antiproton; relation between Newtonian mass

change due to FOHS twisting and electroweak pa-
rameter  deg and Fermi coupling con-
stant; internal FOHS destruction energy ratio
between right and left handed structures, by tau
lepton equivalent mass energy at 1.7778 GeV and
the resonance energy at 1.44 GeV; the destruction
energy of untwisted K+ and K- (kaons) matching to
W+/- bosons; destruction energy of twisted K- by
Z boson; prediction of the destructive energy of
twisted K+ at 105 GeV; physical explanation of the
relation between the muon lifetime, Fermi cou-
pling constant and pion muon electron decay

- matching the proton dimension to the Balm-
er model

C. Neutron shape and dimensions
The dimensions of the neutron are obtained

directly from the proton, because the external dif-
ference is only in their shapes. While the proton is
a torus, but twisted in a shape of hippoped curve,
the neutron is a folded torus with a shape of a dou-
ble rings (with some small gap between the two
loops).

D. Proton and quantum orbit dimensions
- matching the proton and quantum orbit di-

mensions for atoms in molecules (Chapter 9)
- matching the dimensions calculated for

H2 molecule ortho state and cross validating them
by data from optical molecular spectra and photo-
electron spectroscopy (Chapter 9).

Notice
In all cross validations only accurate physi-

cal constants and reliable experimental data are
used. All the sources of experimental data are ref-
erenced. The inclusion of CL space concept, helps
to explain the relation between the electric, mag-
netic and gravitational fields. It allows to explain
also the fundamental quantum mechanics rules,
and the relativistic features in a classical way. The
dimensions and structure of the atomic and suba-
tomic particle appears quite different, than the ex-
isting so far models and theories. The BSM
models, however matches quite well with the ex-
perimental data and the observations from different
physical fields.

θeff
lept 28.762=
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