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Chapter 7. Hydrogen atom

The Hydrogen atom is a dynamical system
composed of one proton and one electron. The in-
ternal structures and individual properties of both
particles were discussed extensively in the previ-
ous Chapters 3 and 6. The analysis of the dynami-
cal properties of the Hydrogen atom, is very useful
for understanding the structure and dynamical
properties of other atoms.

7.1 Proton as a nucleus of the Hydrogen atom

The protonisaTTH 13:+(-), atwisted closed
loop helical structure (with external shape like the
digit 8) enclosing a pair of internal pions and one
kaon. Its interna structure was shown in Fig.
2.15.B. The proton shape (illustrated in Fig. 6.22 of
Chapter 6) is shown again in the figure below.

exdernal
positive shell

[Fig. 6.22]
Proton shape

The proton coreisathree dimensional curve,
whose plane projection is given by the Hippoped
curve at parameter a = ./3. The analytical expres-
sions of the Hippoped curve (in polar and Decart
system) were given in Chapter 6 (Eq. 6.54.a and
6.54.b). The plot of this curve with some specific
dimensions, is shown in Fig. 7.1. We may call the
two portions of the curve proton clubs. While the
real proton clubsdo not lieinaplanebut inadlight-
ly curved surface, we may call this surface aquasi-
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plane. It is slightly curved, because the core length
tothicknessratio of the proton (also the neutron) is:
Loo/2R,+1,) = 2076

Fig. 7.1
Projection of the proton core on a 2D plane

The dimensions of the proton core, deter-
mined in 86.12.2.6 are following:

L, = 0667x10° (m) - protonlength  (6.76)
W, = 019253x10°° (m) - protonwidth  (6.77)
t, = 2(R,+ry) = 7.8411x10 ° (m) - core  (6.78)

thickness
Ly = 162772x10°° (M) - corelength

The ratio between the length and width of the
curve for the accepted parameter a = /3 is3.4643.
There are two characteristic points in the proton
quasiplane, shown in Fig. 7.1 as L, and L,. They
are located on the horizontal axis passing through
the geometrical centre and corresponds to a maxi-
mal vertical width. The distance between them is
0.648L,. These points, called locuses, are charac-
teristic points for the distributed proximity electri-
cal field of the proton.

7.2 Bohr surface of the Hydrogen atom

7.2.1 Proton electrical field

The proton core structure was described in
detailsin Chapter 6. The positive chargeis contrib-
uted by the RL(T) of the external shell. Having in
mind the finite dimensions and shape of the proton
core, the electrical chargeinthe closed field isdis-
tributed over the external shell. The unit electrical
chargeisaresult of the |G energy balance between
the RL(T) structures of the proton’s helical struc-
tures and the surrounding CL space. In thefar field
the electrical lines appear radial to the geometrical
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centre of the Hippoped curve and their density dis-
tribution simulates a point charge. In the near field,
however, the electrical lines are curved with a spa-
tial configuration determined by the proton core
shape. Consequently, when approaching the proton
from the far field, some boundary range should ex-
ist, beyond which the straight radial electrical lines
are converted to curve lines. We may approximate
this boundary range with an equivalent surface.
Outside of this surface, the proton will look like a
point charge particle, possessing the Newtonian
mass of the proton. So it should be a closed surface.
Inside of this surface the proton’s electrical field
will not convergeto a point charge but to the proton
core (Note: the proton core should not be confused
with itsinternal core. The proton core is the exter-
nal enclosure of the twisted helical structure of the
proton, which thicknessis 2(R.+r))).

7.2.2 Relation between the BSM model of the
Hydrogen atom and Bohr model

The Quantum mechanicsis successfully built
on the concept of the Bohr model of the Hydrogen
atom. According to BSM theory, the Quantum Me-
chanical (QM) models of the Hydrogen and other
atoms are good mathematical models, providing
very useful quantum features. However, they could
not serve as physica models of the atomic struc-
ture. The main discrepancy comes from the ab-
sence of CL space parameters and the structural
features of the elementary particles in the QM
models. The goal of the BSM theory is to provide
exact physical model of the Hydrogen and other at-
oms. One useful parameter, that the BSM model
will use from the Bohr model is the Bohr radius,
denoted asa,,. The proper use of this parameter will
provide an useful bridge between the quantum
model of the atoms and the BSM physical models.

In §3.12.2 the parameter a, was determined
from the conditions defining the quantum orbit
length ( Eg. (3.43.f) and (3.43.g). In the same time
a, is determined by the Bohr model of the Hydro-
gen atom.

2
h<e,

2
Tmg

a, = (7.2)

Then we have:
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The left side relation isfrom the Bohr model
of Hydrogen, while the right side is related to the
quantum orbit equivalent radius for electron quan-
tum motion with first harmonic velocity. Based on
the a, parameter, the Eq. (7.1) provides very useful
relation between the CL space parameters, the
Plank constant and the unit charge. Multiplying the
nominators of relations (7.2) by 2r, we obtain rela-
tion valid for the first harmonic quantum orbit,
whose length is equal to 2ra, .

2h%e, A,
=57 2na, = const

(7.3)

m.g2

The ground state orbit in Bohr model defines
a shperical surface around the point like proton
with radius a,. The proton shape according to BSM
isquite different, and the ground state orbit will de-
fine a surface different than sphere. The equiva
lence of Eq. (7.2) and (7.3) allows us to use the
spherical surface area, defined by the radius a,, as
amodified characteristic parameter of the quantum
orbit condition. In such case the radius a, provides
a bridge between the Bohr and the BSM model of
the Hydrogen atom. In order to preserve (at least
approximately) the relation to the Bohr model, we
will make the area of the equivalence surface of the
BSM model to be equal to the area of the spherical
surface defined by the Bohr radius. We may call
the equivalence surface, used in the BSM model, a
Bohr surface, in order to emphasize the relation to
the Bohr radius a,. Then the right parts of the rela-
tion (7.3) could serve as one of the definition pa-
rameters of this surface. It is written separately as
Eq. (7.3.9).

2ra = b = const 7.3.4
°

The parameter 1, = A, IS Vvalid for free CL
space not disturbed by E-field. Soit is satisfied out-
side the the boundary region, that defines the Bohr
surface, but we may consider that it begin to be sat-
isfied at the boundary region.

The other definition parameter of the Bohr
surface is dictated by the shape of the proton or
more accurately said - its proximity electrical field.
The latter possesses a spatial configuration de-
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fined by the proton shape and enclosed inside of
the Bohr surfacein case of orbiting electron.

In case of single proton without an electron (a
positiveion) itselectrical field breaks the Bohr sur-
face. In this case the proximity field distribution is
still preserved, but outside the Bohr surface the
electrical lines arerearranged. So from outside, the
proton (ion) appears as a point charge.

Summary:

e TheBohr surfaceis an equivalent boundary
surface around the proton, with a shape of
ellipsoid.

e Thearea of the Bohr surface is equal to the
area of the spherewith aradius ay,.

» Thegpatial orientation of the Bohr surfaceis
defined by the spatial orientation of the pro-
ton core

 The Bohr surface around the proton is
implicitly defined by the CL space parame-
ters agpy and o.

* In case of orbiting electron the proximity E-
field isenclosed inside the Bohr surface.

* In case of single proton (or ion) the E-field
breaks the Bohr surface. The external E-
filed lines in this case are radial to the geo-
metrical centre and simulate a pointlike
charge particle.

» Theshape of the Bohr surface could be mod-
ified. Thisfreedom is given by the definition
condition Eq. (7.3).

The position of the Bohr surface around the
proton is illustrated by two sections, as shown in

Fig. 7.2.

Fig. 7.2
Bohr surface around the proton
1 - proton core, 2 - Bohr surface section along the
proton length, 3 - Bohr surface section across the
proton width, passing through one of the locuses
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The quasiplanes of the proton clubs are
shown shaded. The two locuses are denoted as L
and Lo.

In order to determine the ellipsoid axes of the
Bohr surface we need to know the E-filed linesdis-
tribution inside the surface. Their spatial distribu-
tion is determined by the twisting characteristic
angle 0, of the external proton shell and the overall
shape of the proton. It is more convenient to
present a section of equipotential surfaces inside
the Bohr surface. The curved E-filed lines should
intercept this these surfaces at right angle. A possi-
ble configuration of the equipotential surfacesin a
section passing through one of the locusesis shown
inFig. 7.3.

Fig. 7.3
Section of equipotential surfacesinside
the Bohr surface

One possible way to determine the Bohr sur-
face parametersisto fit quantum orbits around the
proton core, taking into account the equipotential
surfacesin all possible sections. Inafirst gland this
isacomplicated task. However, we know the shape
and length of the proton core and the length of the
quantum orbits. Then we could make models of
quantum orbits around the proton core with possi-
ble shape. One helpful rulein the search for the cor-
rect shape is, the following:

* themotion in the quantum or bit should be
characterized with a minimum energy loss.

This condition isfulfilled, if:

* thetraceof thequantum orbit interceptsthe
E-filed linesinside the Bohr surface at one
and a same angle.

In the following analysiswe will see, that the
second condition may not befulfilled for thewhole
orbit trace, but for larger or smaller part of the orbit.
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The strength of the quantum effect is dependable

of thiscondition. It will become evident, also, that:

* Thequantum effect becomes stronger when
the inter ception angle approachesthe twist-
ingangle: o, = 05" = 28.762 deg (discussed in
Chapter 6).

The criterion for the correctness of the quan-
tum orbit shape will be the electron energy, corre-
sponding to the quantum number. The electron
energies for the consecutive quantum orbits will
corresponds to the energy difference between the
neigbouring spectral linesin one series. Such mod-
el is developed for the Balmer series of the Hydro-
gen atom. It is presented in §7.8.

7.3 Coulomb forceinside the Bohr surface

It is evident, that the distributed positive
charge of the proton inside the Bohr surface will
provide different interaction conditions between
the electron and proton, when the electronisinside
of this surface. The inverse square dependence of
the Coulomb forces from distance is not any more
aplicable in such conditions. In order to find the
modification of the Coulomb force law inside the
Bohr surface we will make analogy with the optical
radiation. For this purpose we will take example of
a point light source and a point like detector as il-
lustrated in Fig. 7.4. The source and detector, both
have the same angle of view. The point sourceillu-
minates a screen, the distance from which is fixed
and shown as r,¢. Let consider that the screen is
made of micro corner cube tape, having the proper-
ty to reflect the rays at same incident angle (the
road signs are covered by the same type of tape).
Thiswill closely ssimulate a feature of E-field lines
coupling between the point like electron and the
distributed E-filed lines of the proton. The case a,
b, c, corresponds to three different distances of the
detector from the screen. The illuminated area is
denoted as Ag and the pick up area by detector - as
Ag.

In case a. the distance between the detector
and the screen islarger than r,«. This corresponds
to an electron outside the Bohr surface. It can’t pick
up al the electrical field lines of the proton. The
picked up signa is inverse proportional to the
quadrature of distance r, normalized to r,. So this
isaclassical law of Coulomb forces.
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O Source
» Detector

Fig. 7.4

In caseb. the detector field of view coversex-
actly the illuminated surface Aq. This corresponds
to an electron positioned at the Bohr surface. All E-
filed linesof the electronsare connected to all E-
field lines of the proton. This is possible if the
electron velocity isnot very large.

In casec., the picked up signal is proportional
to the square of the distance r, referenced to r.
This dependence is valid only for the range
0<r<r,4. This case corresponds to an electron in-
side the Bohr surface. In such conditionstheelec-
tron’s E-field lines are not able to be
interconnected to all E-field lines of the proton,
because the proton’s E-field lines emanates
from a comparatively large proton core enve-
lope surface.

The above considerations could not be valid
at very close distance to the proton core, because
the effect of the twisting 1G field in the vicinity of
the proton and electron external shell will predom-
inate. This may give some increased repulsion in
very close distance. Such effect will assure a safe
minimal gap between the hardware helical struc-
tures of both particle, which is one very important
feature for keeping their internal RL(T) structures
from destruction (see 86.4.3 Chapter 6).

According to the provided analysis the Cou-
lomb force inside the Bohr surface could be pro-

portional to the term: ﬁé—rz .

(o]
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Outside of the Bohr surface the atom is neutral, for
all series, including the Balmer one. This means,
that the whole charge of the proton participates in
thisterm. For the circular sector of orbit around one
proton core, however, we may consider, that the
electron interacts with half of the E-field lines and,
the corresponding force will become proportional
to —qz—rz.
2me,,

The shown above term should be normalized
to a reference distance, corresponding to r,¢ in the
analogous optical example. It is not difficult to
guess, that this reference distance is the Bohr radi-
us, a,. It connects the CL space and the electron
system parameters: h, ¢, g, m,, according to Eq.
(7.2). Normalising to this distance, we get the equa-
tion of Coulomb force between the proton core and
the electron in the circular section of the orbit,
which isinside the Bohr surface.

(7.3.b)

C

- 919/_21(L)2
4me a2\a,
where: r - is the distance between the proton

core and the electron in the circular part of the or-
bit.

7.4 Orbital planesfor the Hydrogen series.

We will consider here only the orbits,
which are related to emission or absorption of
photons.

The possible orbits are three dimensiona
curvesand in fact could not define asurface, but we
may define an equivalent surface, so the average
distance of it from al orbital points (for small time
intervals) to be a zero. Then such surface will have
atwisted shape, sowemay call it an orbital quasi-
plane. One orbital quasiplane is defined by one or-
bit, but large number of orbits may have acommon
orbital quasiplane. One spectral series of the Hy-
drogen atom, for example, correspondsto set of or-
bits with common orbital quasiplane. Thelimit of
the series correspondsto thelargest orbit of the
set, called a boundary orbit. It will be shown, by
the model of the Balmer series, than the number of
orbits in the series is limited. The electron kinetic
energy, in the boundary orbit can be determined by
the limit energy of the corresponding spectral se-
ries. Knowing the length of the boundary orbit asa
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quantum orbit, the quantum velocity can be deter-
mined. In such way it can be verified, that the
boundary orbit isaquantum orbit. Consequent-
ly, we may determine the length of the boundary
orbit for any one of the series, using the condition
of the quantum orbit.

The equation of the quantum orbit trace
length was derived in 83.12.3 (Eq. (3.43.i)

2rna, A .
Loo(m) = —=2 = —= [(3.43.1)]

n

Q

where: n is the subharmonic number of the quan-
tum orbit

The positions of the orbits are referenced to
the proton core geometry. Then it is more conven-
ient to use the ratio between the quantum orbit trace
length and the core length of the proton. For a
guantum orbit corresponding to a first harmonic
electron velocity, thisratiois:

Lpe/Lgo(1) = 2.042878~ 2 (7.9

The ratio (7.4) is very close to a whole
number and we may use integers, for convenience,
neglecting the small fractions. In 83.12.3 it was
mentioned, that subharmonic quantum loops are
able to be connected in series, forming in this way
acommon quantum orbit. We may call such orbit a
serial quantum orbit. Table 7.1 shows the ratio
calculated for different subharmonic numbers, n,
and for both types of orbits: single and serial. The
ratio is rounded to integer or close fractional num-
bars for convenience.

Possible guantum orbits according to the
approximate ratio L /L ,,(n) Table7.1

n single serial gquantum orbit comprising:
quantum
orbit 2loops 3loops 4loops 5loops 6 loops
1 2
2 1 2 3 4
3 13 2/3 1 4/3 5/3 2
4 va 2/4 3/4 1 5/4 6/4
5 15 2/5 3/5 4/5 1 6/5
6 1/6 2/6 3/6 4/6 5/6 1

Different subharmonic number means a dif-
ferent quantum velocity of the electron. The selec-
tion rule for a proper orbit is additionally
influenced by the |G forces. For this reason a mod-
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el involving the balance between all forcesis nec-
essary. Such model is developed for the Balmer
series. Based on this model and additional consid-
erations of orbits in other atoms, the orbital quasi-
planes of Lyman and Balmer series are identified
with ahigh degree of confidence. The boundary or-
bit for the Lyman series correspond to ratio 2,
while for the Balmer series - to ratio 1 (according
to Table 7.1).

Figure 7.5 shows the position of the bounda-
ry orbits of the Lyman and Balmer series refer-
enced to the proton shape. They define also the
orbital quasiplanes.

The boundary orbits for the higher order Hy-
drogen series may occupy the same orbit as the
Balmer or the Lyman series. Below the boundary
orbit however, the higher order series may have se-
rial orbits (the latter option is not enough investi-
gated by BSM). (For atomswith higher Z number,
the Lyman quansiplane becomes less accessible
and the Bohr surface becomes distorted).

Balmer series Proton

Boundary orbit

Internal orbit (@)

Lytnan series
Boundary orbit

proton

Fig. 7.5

We see that the orbital quasiplanes of Lyman
and Balmer series are quite distinguishable one
from another. The orbital quasiplane determines
the positions of many quantum orbits, but the
boundary orbit isthe largest one. It is reasonable to
accept that the boundary orbits of all possible
guasiplanes are inside the Bohr surface, so in all
this cases the Hydrogen atom appears as a neutral.
The electron may change also the orbital quasi-
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plane if getting or losing alarge amount of energy
due to some elastic collision of the Hydrogen with
another molecule. The probability of quasiplane
change in aspontaneous emission however ismuch
lower than changing of the quantum orbit in the
same orbital quasiplane. We may consider, that in
the processof ionization, thelost electron has been
in one of the possible quasiplane. It isreasonableto
consider that atoms with Z >1 may also have con-
ditions for different orbital quasiplanes as the Hy-
drogen. However, the possible quasiplanes are
dependent of the proton and neutron arrangement
in the nucleus, as this will be shown in Chapter 8
and the Atlas of the atomic nuclear structures. In
any case, however, theionization is possible.
Figure 7.6 illustrates the possible shape of
boundary orbits for higher hydrogen series.

N

Fig. 7.6
Possible shape of boundary orbits for the
Hydrogen series of higher orders

The existence of more than one boundary or-
bits, could be explained a so by theflexibility of E-
field refurbishment that may modify the shape of
the Bohr surface. We may assume that the Bohr
surface have a constant area of 4ra’ but aflexible
shape, depending of the working orbits and the in-
terconnection of the proton to other protons in the
atomic nucleus. Below the Bohr surface, the E-
field possesses a spatial structure, confined to the
proton shape and the characteristic twisting angle
e, Of the E-field line emerging from the proton’s
core. The circulated electron in the orbit intercepts
most of the E-field lines at constant angle. In the
Bohr surface region this condition (intercepting E-
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filed line angle) is disturbed. In the same time the
electron possesses a finite momentum even at the
Bohr surface (this is shown later in the Bamer
model). Consequently, the electron is able to es-
cape from the boundary orbit, if the momentum is
large enough.

Below the boundary orbits are all orbits con-
tributing to the series, terminated with the ground
state orbit.

» Accordingto BSM, every serieshasitsown
ground state orbit, which isthe shortest one.

This conclusion will be demonstrated for the
Balmer model.

The quantum conditions defining the stable
orbits are discussed below.

We may use the term orbital for all orbitsin
one series. Although we have to keep in mind that
it does not correspond to the term orbitals used in
the guantum mechanics (where they are defined by
the wave function). We see aso that the orbital
guasiplanes are curved but open surfaces. The elec-
tron transitions between any two orbits are in one
orbital quasiplane. The passing of the electron from
one to another orbital quasiplane requires special
conditions and is less probabl e.

From the considerations presented so far and
from the further analysis we can formulate the fol-
lowing physical rulesfor the orbits:

* Theorbitsfor all lineseriesareinsidethe
Bohr surface

* Any orbital quasiplane, related with photon
emission or absor ption, inter ceptsoneor two
proton clubs

» Theboundary orbitsapproach thezero level
potential

7.5 Effect of the orbiting electron on the atomic
motion in CL space.

It is evident that the electron trajectories re-
sidein the orbital quasiplane. Thelatter isan open
surface and could not affect the static pressure of
the CL space exercised on the protons and neu-
trons, and consequently - the atomic mass. Al-
though the orbital momentums of the electrons
could affect the atomic motion in the lattice space,
causing a spin rotation. For asimple physical anal-
ogy the orbital’s twisted quasiplanes behaves as a
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fins of mechanical object, causing arotation of this
object when moving in afluid.

Let considering a neutral Hydrogen atom,
moving with constant velocity. The most probable
orbit is the ground state. The electron has its own
momentum that defines the orbital momentum. But
in order to keep this momentum in the Hydrogen
motion, the interaction with the lattice should be
minimal. Then the Hydrogen has to rotate with
some confined spin because the orbital shape is
twisted. In result of this motion, the electron could
make transitions between very close orbitals. So it
may pump the CL space with very low energy, that
could be periodically emitted as alow energy pho-
ton. The input energy for such emission may come
from the equalization of the zero point energy of
the CL space. Such radiation will contribute to the
Cosmic Microwave Background, corresponding to
the temperature of 2.72 K. It might be contributed
not only by the Hydrogen atoms and molecules,
but from other atoms and molecules, as well. The
motion behaviour of such atom or molecule will
simulate a “flying bird” but with simultaneous ro-
tational motion.

From the detailed atomic nuclear structure
discussed in Chapter 8, we will see that many as-
pects of Hydrogen orbital structure are preservedin
the atoms with higher Z number.

Summary
e Theorbital momentum affectsthe proton

confined motion in CL space

7.6 Quantum motion of theelectron in electrical
field. Quasishrunk CL space.

The ionization energy of the Hydrogen atom
is13.6 eV corresponding to the optimal velocity of
the electron. Consequently, all orbitals velocities
are of suboptimal type. The quantum motion for
such velocitieswas analysed in 83.9. The analysis,
was provided for CL space without external electri-
cal field. In Hydrogen atom, however, all orbitsare
inside the Bohr surface, where the electrical field
has a specific spatial configuration, defined by the
proximity field of the proton and the proximity
locked field of the neutrons. Let denote a CL space
without external electrical and magnetic field (oth-
er than the electron own fields) asafree CL space
and the CL space with an external E-filed - asaE-
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field CL space. Then we may distinguish two cas-
es of the electron confined motion:

(a) electron motion in afree CL space

(b) electron motionin aE-field CL space

The case (a) was analysed in Chapter 3. The
guantum motion of the electron is defined by the
CL space parameters. Between them are the Comp-
ton wavelength, g, , Which is defined by the
SPM frequency and the light velocity. For afree
CL space we have vg,, = v, = v,, Where, v, isthe
first proper frequency of the electron system (elec-
tron shell - positron). In theend of §2.11.2.2it was
discussed, that the stationary EQ of the CL
nodes may posses higher resonance frequency,
than the M Q node. This automatically means that
they will have a higher SPM frequency (a higher
SPM frequency for CL space with not changed
node distance means a shorter SPM cycle and a
shorter propagated SPM phasg, i. e. a shorter SPM
wavelength ig,,, in comparison to the free CL
space).

Vsem > Vspm  OF Agpy’ <Agpy (7.5)
where: the prime sign denotes the corre-
sponding parameter in the E-field CL space.

It is apparent from Fig. 7.5 that the Balmer
guasiplane is much less twisted than the Lyman
one. Thismakes Balmer orbits more convenient for
analysis. The electron orbits for Balmer series oc-
cupy the range between the proton core and the
boundary orbit. Around the proton core, their traces
tend to follow the equipotential curves asillustrat-
edinFig. 7.3.

According to the derived rule for the inter-
ception angle between orbital trace and E-field
lines (see §7.22), it follows, that there is atendency
of keeping a constant value of this angle with vari-
ations within alimited angular range. Consequent-
ly, the condition (7.5) will be more or lessvalid for
the motion in any one orbit below the boundary
one. In the same time, the electron proper frequen-
Cy v, IS unchanged, because the electron system
possesses own internal energy. While the E-field
does not affect the CL space node distance, it af-
fects the SPM wavelength, making it shorter. But
the SPM wavelength is a specific qguantum param-
eter of the CL space influencing the the light prop-
agation and the electron quantum motion. So if the
electron velocity is estimated by the node distance,
the quantum velocity appears smaller, the follow-
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ing the shorter gy, . IN the Bamer orbits model,
presented in the next paragraph, it is accepted, that
in the E-field CL space inside the Bohr surface,
Apy Changes linearly with the radius of the circu-
lar part of the orhit. In this case, the obtained results
of the model are optimal. The figure of merit isthe
shape of the calculated energies corresponding to
the Balmer series spectra. The linear dependence
may be aresult not only of the proton E-filed con-
figuration below the Bohr surface, but also of the
magnetic field lines caused by the electron motion
and oscillation.

The reduced value (shrinkage) of Ag,
and the orbital length dependence on it gives a
possibility the space below theboundary or bit to
contain alarger number of orbits.

The shrinkage of the iy, inside the Bohr
surface complicatesthe analysis, because the quan-
tum scale becomes different. In order to solvethis
problem, we may consider, that the quantum
spaceis quasishrunk. The term quasi is used, be-
cause the CL node distance is not changed and the
proton’ sdimensions- also, but the shrinkageisval-
id only for the quantum conditions. In order to keep
thisinto account, we haveto translate the necessary
parametersto the scale of the quasishrunk quantum
space, i. e.to Ly, (the primeis used to denote the
shrunk value of the parameter). The field forces
and inertial momentum also hasto be referenced to
this scale. In such case, the inertial mass of the
electron referenced to rg,,, Scale will be affect-
ed. When analysing the motion in the circular part
of the orbit, the apparent inertial mass will ap-
pear larger, because the electron intercepts small-
er number of nodes per g, - We may test alinear
or a quadratic dependence of the apparent inertial
mass in function of orbit length (or distance from
the proton core). The quadratic dependence, which
isasymmetrical function of the Coulomb forcein-
side the Bohr surface provides better results in the
Balmer model.

The quasihrunk quantum space affects not
only the electron motion but the quantum waves as
well. Theinternal spaceinside the Bohr surface be-
haves as an optica media with gradual index
change. In such way, it affects the propagation of
the guantum waves in the X-ray range. This behav-
iour is discussed in Chapter 8. Consequently, we
may accept that the space is characterised with a
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gradual refractive index. This refractive index is
valid only for electron motion at proper orbits and
for incident quantum wave falling at proper inci-
dent angle.

The static pressureisfrom all direction forces
exercised on the FOHSs, valid also for the el ectron.
According to thisformulation, the static pressurein
E-field CL space should not be changed, because
the average node distance is unchanged. Then the
electron system parameters are preserved. Thisis
valid also for the fine structure constant, estimated
as aratio between the tangential and axial velocity
of the electron.

Summary:.

* In E-field CL space, the SPM wavelength
along the equipotential curvesisreduced

» Theéelectron performing a guantum motion
in equipotential curve exhibitsincreased
apparent inertial mass, if referencing its
motion to the quasishrunk quantum space

* Therefractiveindex of the quantum qua-
sishrunk spaceisvalid for electron motion at
proper orbit and for incident quantum
waves falling at proper anglein respect to
the proton club quasiplane.

7.7 Quantum orbit conditionsfor orbitsinside
the Bohr surface.

7.7.1 Quantum conditions, related to the or bital
length

The quantum loop was defined in §3.12.2
based on the matching the energy conditions be-
tween the Bohr model and the BSM model of quan-
tum orbits.The quantum loop is a closed loop
trajectory of the electron moving with confined
velocity. Theloop trajectory length isdefined by
the condition of whole number of carrier oscil-
lations.

The number of electron’sfull rotationsin the
guantum loop of electron with first harmonic quan-
tum velocity (13.6 eV) was define in Chapter 3 by
the equation

2rna, A

Se oSy

We see, that the value is very close to
18778.333(3). The difference is only (1.53E-4)%
and might be a result of small error in the experi-

= 18778.362 [(3.43.h)]
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mental estimation of the fine structure constant o .
Having in mind that the second proper frequency of
the electron system (the internal positron - central
core frequency) is 3 time higher we see that for one
quantum loop it make a whole number of cycles:
18778.333(3) x 3 = 56335 Ccycles of positron-core
The obtained phase repetition conditions
could be considered as a shortest orbital time con-
dition, valid for afirst harmonic quantum orbit.
The next condition for a phase repetition of
both proper frequencies is for 3 orbital cycles. It
will contain 56335 full electron rotations or 169005
cycles of the internal “positron-central core” sys-
tem. Thetheoretical expression of thisconditionis:

2—7;: where: s, isthe electron helical step

L et consider now the same effect for asecond
harmonic quantum orbit, that isvalid for the Balm-
er series. The axial velocity and rotational rate of
the electron are twice slower, but the orbit is twice
shorter than the first harmonic orbit. Therefore, the
time of one orbital cycle is the same and the elec-
tron system possesses one and a same number of
cycles for its two proper frequencies. This condi-
tion is valid also for larger subharmonic elec-
tron motions but only for single quantum loop.
For the higher subharmonic numbersin Hydrogen,
however, single quantum loops does not fit to the
proton structure. Consequently the orbits of the
higher order series (3rd, 4rd, 5th, 6th) are com-
posed of serial quantum loops.

The condition of the phase repetition is only
the necessary but not enough condition related to
the finite orbital time (alifetime of exited state). A
second condition causing the dropping to lower or-
bit is from the mismatch between two short mag-
netic line conditions, described later in §7.7.2.

Theresult for a phase repetition of oscillating
electron was derived for a free CL space, whose
conditions are also valid for the boundary range of
the Bohr surface. If the ig,,, below the Bohr sur-
face gradually change, as discussed in the previous
paragraph, the above condition (56335 full cycle)
isstill preserved. It isonly necessary the cosine be-
tween the negative core oscillation, and the E-filed
lines of the proton to have enough small dispersion
around one mean value defined by the orbital posi-
tion. Keeping in mind, that the E-field are subordi-
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nated by the angle ¢,, but are enclosed in the

internal volume enclosed by the Bohr surface, it is

apparent that the condition for quantum orbits
could be satisfied for aspatial range inside that sur-
face.

Consequently the quantum orbit condi-
tions may be valid for large number of orbits,
below the boundary one.

It will become evident from the analysislater,
that the above mentioned conditions are valid for
all the orbits and orbital transitions that provides
line series of the Hydrogen atom.

If the above conclusion is correct, an addi-
tional quantum condition is necessary in order to
provideanindividual orbit separation, correspond-
ing to the different quantum energy levels.

» Thecondition for orbit separation ispro-
vided by the magnetic line, aligned with the
spin axis of the orbiting electron.

» Theabove condition iscontributed by the
spin rotation of the orbiting electron.

When the electron provides a repeatable mo-
tion in aquantum loop, itsspin rotation isan impor-
tant attribute of the motion. The velocity vector of
the rotating electron shell is normal to the orbital
trace, so the magnetic lines from the spin appear
parallel totheorbital trajectory. Havingin mind the
radial E-field distribution (see Fig. 3.6, Chapter 3)
and the quantum magnetic radius, we may distin-
guish two separate bundles of magnetic lines
from the spinning electron: peripheral and axi-
al. The peripheral one is related to the quantum
magnetic radius and will have a shape of hollow
tube around the electron shell. The rotating elec-
tron provides a large concentration of magnetic
field lines passing through the axis of its rotation.
Thiswill cause deterioration of the external E-field
of the proton in anarrow zone centered around the
electron orbital trace. Consequently, we may con-
sider that the axially aligned field of of the mov-
ing electron creates a path with MQs, having
the same SPM frequency as the CL space out-
side of the Bohr surface, where the E-field is
missing. In the same time the magnetic linesin the
peripheral field occupy alarger volume and do not
lead to disturbance of the proton E-field. Asaresult
of thisanalysis, we arrive to two important conclu-
sions:
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* Theperipheral magnetic lines from the spin-
ning electron interact with the E-field CL
space created by the proton.

* Theaxial magnetic lines occupy a small vol-
ume space, whilethe proton E-field in this
spaceisdeteriorated. The CL nodesin this
space are of MQ type with a same SPM fre-
quency asthe external free CL space.

* Theag,, inthe peripheral space along the

orbital trajectory is shrunk, whilein the
axial spaceit isthesameasin thefree CL
Space.

Having in mind, that the magnetic line is a
loop of zero order SPM waves, it is close to the
mind, that its length should contain a whole
number of igp,, . For large size of magnetic loops,
this condition is quite easy to be satisfied. The
sameisnot true for the size of the electron orbitsin
atoms. The whole number of 1, isenough strong
quantum condition in order to define the stability
conditions for an individual orbit. Therefore, this
could be regarded as aquantum condition related to
the magnetic lines. We may call this quantum con-
dition ashort magnetic line condition.

» Theshort magnetic line condition, provides
quantum conditionsfor individual orbit sep-
aration in the series. It isbased on the
assumption, that the length of the magnetic
lineloop should contain awhole number of
A‘SPM '

» Theshort magnetic linecondition isvalid for
the peripheral and axial magnetic lines, cre-
ated by the spinning electron.

It is evident, that the individual orbits corre-
sponding to one series fulfil simultaneously two
quantum conditions. the quantum loop condition
and the short magnetic line condition. In the same
time the short magnetic line condition is valid for
the peripheral and axial magnetic lines from the
spinning electron. Analysing the Balmer model we
will see, that the first one determines the orbits
separ ation, while the second one defines the fi-
nite time of the electron on a particular orbit.

Figure 7.7 illustrates the short axial magnetic
line condition for one particular orbit in Balmer se-
ries.
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Fig. 7.7
Stable orbit defined by the short magnetic line
condition. The peripheral and axial magnetic lines
are from the electron spin rotation

The shown sinosoids along the orbital trace
indicates the whole number of longitudina A, ,
inaE-field CL space. They fulfil the short magnet-
ic line condition for the peripheral magnetic lines,
which are induced by the spinning electron. This
condition definesthe orbit separation in the Balmer
series. A momentary position of the orbiting elec-
tron and its exploding view are show in the same
figure. The spatial configuration and density of the
peripheral magnetic lines are determined by the
guantum magnetic radius r. The r radius for
Balmer seriesis defined by the second subharmon-
ic quantum velocity. While the short magnetic line
condition from the peripheral lines definesthe orbit
separation, the same condition for the axial lines
defines the total time duration of the individual or-
bit. This will become evident by the analysis of
Balmer model.

The shape of the orbit shown in Fig. 7.7 is
idealised. Thereal orbit could be distinguishablein
away, that the section around the proton core may
not be a perfect circular and the sections between
the circular parts may not be straight lines. Despite
of the accepted simplification, the adopted shapes
of the orbits lead to consistent results of the model.

7.7.3 Summary for quantum orbits:

* The guantum loop condition isvalid for all
or bits corresponding to the energy levels of
one spectral series
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* Theshort magnetic line quantum condition
providesindividual orbit separation in the
series

» Theorbiting electron comply simultaneously
the both quantum conditions

* Thesegparation of the quantum orbit into a
number or orbitsisaresult of 1, change

in function of the distance from the proton
core, in the E-field CL spaceinside the Bohr
surface

* Thephaserepetition time of the two proper
frequencies of the electron is characterized
by two time cycles corresponding to the
whole number of the particular cycles.

7.7.4. Electron orbits contributing to the sharp
spectral linesin the series

The spectral series of the Hydrogen atom are
measured with high accuracy. It iswell known fea-
ture, that when approaching the energy limit for
every one of the series, the linesbecomelessdistin-
guishable and finally converts to a continuum. The
guantum mechanical model gives explanation of
this effect by accepting infinite number of closed
spaced levels. The BSM model, however, leads to
adifferent conclusion:

» Theobtained continuum isnot from infinite
number of levels, but from deteriorated
guantum conditions. Such conditions cause
some ener gy variation of the emitted quan-
tum wavesthat is detected as widen spectral
line shape.

Let take for example the Balmer series. Not
all orbits below the boundary one contribute to the
sharp spectral lines. There is a range below the
boundary orbit, where the quantum orbit condi-
tionsin E-filed CL space are not well fulfilled. This
isillustrated by Fig. 7.9, where all shown dimen-
sonsarein scale.
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Fig. 7.9
Boundary and limit orbits in the Bamer orbital
guasiplane: 1 - proton core; 2 and 3 - boundary orbits, 4 - limit
orbit. The region associated with thefor sharp line series
is shown by green colour (internal circles) while the region
with smeared lines with agrey colour (externa circles)

Two possible boundary orbits are shown: 2
and 3. The both have one and asame length, but the
orbit 3 is more probable for the escaping electron,
while the orbit 2 still passes through the proton
club. The spaceinside thelimit orbit 4 (green ared),
isoccupied by orbits contributing the Balmer series
spectral lines. In thisregion large section of orbital
trace coincides or follows the equipotential curves.
(The E-field interception angle of the equipotential
surfaces inside the Bohr surface are not exactly at
90° due to the characteristic twisting angle o,, ). In
the region between the limit and boundary orbit
(grey area) the mentioned above condition is not
fulfilled and the quantum orbital conditions are de-
teriorated. This causes an increase of the line width
and appearance of continuum.

Figure 7.10 shows a shape of orbit from
Balmer series in the region corresponding to the
sharp spectral lines, together with the E-filed lines
around the proton core. The E-filed linesare shown
normal in the circular regions around the proton
core, for drawing convenience, but in the real case
theangleisnot exactly /2 , dueto thetwisting an-
gles,,.
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Idealized orbital shape from Balmer seriesin
the region corresponding to sharp spectral lines.

7.8 Modedl of the Balmer series

Note: Thisis an example model with mostly qual-
itative output results. The quantitative results may
not be considered as final, because the model have
more than one adjustable parameters.

7.8.1 Purpose and general considerations

The purpose of the modée is to provide some
verification about the correctness of the quantum
orbits concept, developed in the previous para-
graphs. The model is aproximative, because it con-
tains some unknown or partialy known
parameters, so there are more than one adjustable
parameters.

Theknown parametersare:

(a) proton core and proton width

(b) shape and length of the boundary orbit

(c) shape and length of the limit orbit

(d) approximate shape and length of the
ground state orbit

(e) both quantum conditions at the boundary
orbit

The unknown parameter is:

(9) the inverse power degree of the leaking
(in CL space) 1G forces between the proton and
electron structures

Partially unknown parameters:

(h) the parameters of the quantum qua
sishrunk space inside the Bohr surface

Thefigureof merit isthe correct shape of the
curve presenting the calculated by the model ener-
gy levels of the Balmer series.

It is evident, that the attraction |G force be-
tween the proton core and the electron affects the
electron motion. These forces appears as leakage
IG forces through CL space, so they are not any
more proportional to theinverse cub of the distance
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(like in a pure void space). The modified 1G law
through CL space should appear in higher inverse
order. (see Fig. 2.8.b and the discussion of feature
7in82.6.1). In our casewewill smulatethelG low
through CL space by using the Newtonian mass of
electron as unit mass and the Newtonian gravita-
tional constant. The attraction |G force is expected
to appear with a large inverse power than 3, be-
cause the leaking IG field in CL space falls faster
with the distance, than the I1G field in pure empty
gpace. Applying the defined above figure of merit
we may obtain the degree of the IG law valid for
the distance range limited by the Bohr surface.

The determination of the parameters of the
guantum quasishrunk space is more controversial.
The space inside the Bohr surface is characterised
by:

- two different regions, as shown in Fig. 7.8,
the region of spectral series and the region of the
continuum

- the region of spectral line could be divided
into two zones: two zones of the circular orbit trace
around the proton core and one middle zone be-
tween them.

We may simplify the problem if deriving pa-
rameters from the orbit lengths and the proton di-
mensions. For this reason we use idealised shape
of the orbits, estimating the quantum quasi shrunk
factors for the orbits which lengths are known.

In order to express the orbital dependence on
Agpy » 1T 1S NECESSArY to introduce a quantum qua-
sishrink factor. If assuming a linear dependence
(that will be confirmed by the results) it is more
convenient to define a quasishrink ratio, k. Itis
equivalent to consider, that k.. isdefined asaratio
between the Agpy, @ Bohr surface (corresponding
to afree CL space) and Ay,
at the Balmer Ground State (GS) orbit. Once deter-
mined, we may reference the quasishrunk ratio to
the Bohr surface, where al the CL space and elec-
tron parameters are defined, by the physical con-
stants. The reciprocal of the quasishring ratio is
equal to the gradient refractive index. The exist-
ence of this index around the proton club will be
discussed in Chapter 8 in connection with X-ray
properties of the solids.
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e Thequantum quasihrink refractiveindex is
reciprocal tothequasishrink ratio. It could
be denoted as ng

Ngs = 1/kqs

The Bohr surface could not be considered
asasurface with astable shape. The electron, when
orbiting in different quasiplanes, may cause a dif-
ferent deformation of the Bohr surface. The physi-
cal constants, like h, g, mg, v, are valid for the
space outside of the Bohr surface. In order to use
them we have to trand ate some of the Balmer mod-
el parameters to the Bohr surface. In many casesit
iS more convenient to use the Bohr radius or the
length of the Bohr orbit.

7.8.1.A. Aproximative determination of the
quasishrink ratio for Balmer series

The quantum orbits contributed to the Balmer
series lie on the Balmer quasiplane (now consid-
ered as planefor asimplicity) and occupy theinter-
nal circle regions, shown in Fig. 9.7. It is
reasonable to accept a linear dependence of the
quasishrunk SPM wavelength g, infunction
of the distance from the proton core. Then the ap-
proximate value of the quasishrink factor could be
obtained by the ratio between the Bohr orbit length
2na, and the shortest orbit. The shortest orbits is
the ground state (GS) orbit. One factor restricting
the orbital length is the finite distance between the
two proton coresin the Balmer orbital plane. Hav-
ing in mind the requirement for safety margin be-
tween closely spaced FOHSs discussed in Chapter
6, it is reasonable to accept the magnetic radius of
the electron and proton as a second factor.

. This condition is illustrated in Fig. 7.11,
where r is the magnetic equivalent radius of the
electron for the second subharmonic (see 83.11 and
Table 3.3).

The magnetic radius for the second subhar-
monic was given in Table 3.3: r,, = 2100x107%.
Then

fo = (Ry+Tp)+ (Ro+Te) = 9.89x10°° M

Thelength of theidealized orbitsin the orbit-
al range: GS orhit - limit orbit, is given by the Eq.
(7.6):

Loy = 2(di/1—4r2/d2+r(n +2asin(2r/d))]  (7.6)
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where: r- is the orbit distance in the circular
part from the centre of the proton core; d - is equal
to the proton width (given by Eq. 6.77)

magnetic  F-
radins m I—
electron

protof core ;

Fig7.11
Definition conditions for r . corresponding
to the Balmer GS orbit

The Balmer GS orbit length, obtained by the
conditions of finite magnetic radiusis0.45018 A (1
Angstrom = 1019 m). The length of the Balmer
boundary orbitis:  2ra, = 3.3249187x10°° (M)

Then the approximative mean value of the
quasishrink ratio, Kgs, could be defined asratio be-
tween both orbits:

kys = 7:385 . (7.7)

The quasishrink ratio gives a possibility to
define the change of g, in the Balmer orbital
plane as a function of distance from the proton
core. Thisis used in the next paragraph.

7.8.2 Concept of the model

The concept of the model is based on the en-
ergy calculation of the possible quantum orbits, re-
lated to the spectral lines of the Bamer series
(without the continuum near the limit). These or-
bits cover the range between the Bamer Ground
State (GS) orbit and the limit orbit (denoted as4 in
Fig. 7.8). The orbit positions are illustrated by Fig.
7.13. Their shapes are idealized for convenience.
Every orbit containstwo circular sectorsaround the
proton cores connected with tangent lines, passing
through the proton club locus. The trace length of
such geometrically simplified orbitsisgiven by Eq.
(7.6).
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G.5. orbit lirnit
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Fig. 7.13
|dealized orbits for Balmer series

Complying the short magnetic line quantum
condition for the peripheral magnetic lines related
with the quantum magnetic radius of the electron,
the length between the neighbouring orbitswill dif-
ferexactly by gy, -

Theenergy level of all orbits can be estimated
by applying a balance of forces for the motion of
the electron in the circular sector of the orbit. The
electron velocity in any orbit depends on theintrin-
sic gravitational force, Fg, the internal Coulomb
force, F¢, and the inertial force from the apparent
inertial mass. The balance of forces for this region
is given by Eq. (7.8), from where the electron ve-
locity is expressed by Eq. (7.9).

2

= me
FctFig = my (7.8)
v = [S(FetFio) (7.9)

The Coulomb forces inside of the Bohr sur-
face has been presented by Eq. (7.3.b) wherethe ar-
gument r is counted from the radius of the GS orbit.
In order to use later the quantum numbers as adopt-
ed by the Quantum Mechanics, we will use a shift-
ing parameter ris. From  geometrical
considerations we may consider that when the el ec-
tron circles around one proton club it interacts only
with the half of the proton charge. Using Eq. (7.3.b)
and applying these considerations we arrive to Eq.
(7.10) for the Coulomb force inside the Bohr sur-
face.

F. = M&(i-‘lﬁéj (7.10)

4me a2\a, — g
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where: r - isarunning parameter - the dis-
tance of the orbit interception point with OO* axes
from the proton core centre (absolute units)

res - Isthedistance of the Balmer G.Sor-
bit interception point with axes OO* from the pro-
ton core centre (see Fig 7.9). In order to satisfy the
quantum condition, rgg is very close to r,, but at
distance not larger than one gy, -

(9/2) - isaproton core charge portion affect-
ing the electron motion at point O.

In order to apply the quantum condition for
orbit separation, we have to use A, , but it de-
pends of the argument r. For this reason it is more
convenient, to accept aconstant g, , referenced to
the distance of the boundary orbit and to correct
the argument in the expressions of the |G force, the
Coulonmb force and the inertial force. It isequiva
lent to work in units of quantum quasi shrink space.
Then we can use directly the quantum number of
the orbit.

The inertial mass law in a quasishrunk
space is a controversial problem, not investigated
enough. It was discussed in 87.6. A set of laws are
tested in the model. The best results are obtained
for asquare law dependence, when the curve shape
isamirror image of Coulomb law inside the Bohr
surface (the mirror axisis parallel to the horizontal
axis). So the electron inertial mass dependence on
the distance in the quasishrink space is smulated
by the Eqg. (7.11).

r—regg)2
m = meniz—me(niz—l)(—GSS)

a,—r

o 'G

(7.11)

where: n; is the quasishrink index of the zone
around the proton core, assuming that g, isalin-
ear function of the argument r.

The smulation of the IG forces through the
CL space was discussed in Chapter 2 §2.6, feature
7. The IG forces between the proton core and the
electron are presented as a higher degree inverse
power law between a mass point and a mass bar.
The Newtonian mass of the electron is used as a
mass point, while the proton core - as a bar of such
mass points. One single coil of the external positive
shell of the proton core contains approximately the
same intrinsic mass as the el ectron. Then the mass
of the proton core can be expressed as number of N
electron masses. Then the differential gravitational
filed, dg, is given by the Eq. (7.12)
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= ¢cos(a)dx = GNm ! dx
L((r2+x2)0-5)P L((r2+x2)0~5)P(r2+x2)0~5

(7.12)

dg

where: L isthelength of the massbar; M isits
intrinsic mass; m - isthe point mass for which gis
estimated; N is the number of mass points, from
which the bar is consisted, r - isadistance; x - isa
running parameter for integration; and P is the de-
gree of the inverse power law.

The integration on x gives the intrinsic gravi-
tational field, from which the gravitational forceis
expressed. Thetuning of the model requires precise
adjusting of the power degree. For thisreason anu-
merical integration is preferable.

The bar length is proportional to the number
of mass point. So it is more convenient to replace
N by alength of the bar, L, in order to have one and
asameunitsof distance. The parameter L could be
expressed as afraction of L. and the model could
be tested for different L. Then we arrive to the ex-
pression of the IG force that leaks through CL
space inthe range between the el ectron and nearby
proton core.

L2
_2rGm? 1
Fig = 3 J(r2+x2)pdx

(7.13)

From the Eq. (7.13) we see that the factor p
after the integration will corresponds to a power
law of degree P, according to the expression (7.14)

b - p=05

- (7.14)

Replacing the value of Fc and F|g in Eq.
(7.8) we get the velocity in function of distancer.
In al equations the converted mass is included by
its expression given by Eqg. (7.11). Now we need to
connect the forces balance condition with the quan-
tum condition of the orbit separation based on the
whole number of Ag,,, for any orbit length. For this
reason the Mathcad program st_w_gn.mcd is used.
The length of the orbit in function of the distancer
isdetermined by Eq. (7.6). In this point of the mod-
el, we have two optionsfor applying the short mag-
netic line condition (the magnetic lines induced by
the spinning electron):

(@) - for the peripheral magnetic lines
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(b) - for the axial magnetic lines

For case (a), assuming alinear dependence of
Aepy fromtheradiusrinthecircular zone and ref-
erencing tothe ag,, = A, for theboundary orbit, we
have:

a,—r
Ao’ = x{l_(l_és)ao—_rj (7.15)

The curvature of the calculated energy levels
from the model output is very dependable of the
quasishrink ratio ks Its value estimated in the pre-
vious paragraph is 7.385, but the model, shows bet-
ter results with a value k, = 7.728. Taking into
account the very approximative method for estima-
tion of this parameter such small deviation could be
acceptable.

For case (b) the SPM wavelength is a con-
stant and is a same as for the externa CL space
Aspw -

The case (a) and (b) separates the model into
two similar branches. Let following the case (a), as
it is related with the quantum orbit separation.

The length of the quantum orbit expressed as
awhole number of A, iSgiven by Eq. (7.16).

L, = (k (7.16)

q —2+N)Agpp'

where: Ky, IS the number of wavelengths for
the nearest to the core orbit, but not closer thanr,;
nisaprincipal quantum number; thefactor 2is
for matching the orbit number to the quantum
mechanical principal quantum number for
Balmer series.

Substituting (7.16) in (7.15) and equating the
result with the Eq. (7.6), we arrive to Eq. (7.17).

Z[d /1—4;—§+r(n+235in(25)n = Ly(MAgpy'(F) (7.17)

Giving consecutive numbers of n starting
from 2, the corresponding distance r is determined
and discrete value function r(n) is obtained. The
function r(n) isfitted to acurve.

r(n) = a+bn° (7.18)

where: a = 0.00396279; b = 0.0051841; ¢ = 0.7947166

The fitting results are shown in Fig. 7.14.
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Fig. 7.14

Substituting the argument r(n) in al terms of
the Eqg. 7.9, we obtain the electron velocity in
function of the quantum number. The plotted
curve of this discrete value function is shown in

Fig. 7.15.
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Fig. 7.15

Orbital electron velocity in function of the quantum
number

All spectral lines of the Balmer series are be-
tween 3.4eV and 0 eV. Thevelocity inthe GS orbit
with n = 2 corresponds to 3.4 eV , while the veloc-
ity of the limit orbit with n = 39. corresponds to O
eV. Theplotin Fig. 7.15 shows, that the velocity is
decreasing with the quantum number for the range
2<n<26 and then dightly increased for n>26. We
may call thefirst region aregion of velocity inver -
sion.
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Thevelocity curveisreferenced to the GSve-
locity. Thisvelocity is determined as a second sub-
harmonic velocity corrected by the quasishrink
index ng:

V(@) = 5= (m)
gs

(7.19)

Where the quasishrink index is inverse pro-
portional to the quasishrink ratio kge.

The model velocity equation (7.9) should
givethesamevaluefor n = 2 asEq. (7.18). For this
reason only the parameter p in Eq. (7.11) is tuned.
The corresponding degree of theinverse power low
of I1G forces, is obtained by Eq. (7.14). The plot of
|G forces together with the plot of the Coulomb
forces are both showninFig. 7.16.

—g Forces inside the Bohr surface

4-10
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Orbital quantum number

intrinsic grav. force
~  Coulomb force

Fig. 7.16
Plots of 1G and Coulomb forces
(drawn as continuous plots)

It become evident, that the slight increase of
the electron velocity for n>26, as shown in Fig.
7.15, iscontributed by theincreased Coulomb forc-
es, asshowninFig. 7.16.

Fig. 7.17 shows plots of the Coulomb forces
fortwocases: 1- F2) = 0;2- F(2)>0 (n = 2 COr-
responds to the Balmer GS orhit). .
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quanturm numkber, n

Fig. 7.17. Coulomb forces in function of quantum
number (drawn as continuous plots)
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Having in mind that the GS orbit is deter-
mined by the finite distance r, (see Fig. 7.11), it
becomes apparent, why Coulomb force for n = 2
may not start from zero, but from somefinite value.
For thisreason, the plot 2 ismore probable. It does
not affect significantly the curve shape of the ener-
gy level fitting, but may affect slightly the total or-
bital time, discussed in §7.8.3

Theinertial mass dependence on the quantum
number influences the shape of the velocity and en-
ergy levels of the series. The best fitting result is
obtained for a second order inertial mass depend-
ence, given by Eq. (7.11). Expressed in function of
quantum numbers, the plot of Eq. (7.11) isamirror
image of the Coulomb forces expressed by
Eq.(7.10). The plot of the inertial mass expression
(7.11) isshowninFig. 7.18.
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Fig. 7.18

Newtonian inertial mass of the electron
in the E-field quasishrunk space inside
the Bohr surface (drawn as continuous plot)

Using the obtained expressions of the inertial
mass and velocity as functions of the quantum
number, we may express the electron kinetic ener-
gy ineV, for any one of the quantum orbits by us-
ing the well known classical equation:

E (n) = o.5m(n)n2(n)%1 (7.20)

The energy levels, according to the quantum
mechanics are the potential energies, but refer-
enced to the limit orbit. So we have:

Ep(n) = 0-E(n) = —(0.5m(n))n2(n)%1 (7.21)
Fig. 7.19 shows the plot of the calculated en-

ergy levels, ,(n), together with the plot of the en-
ergy levels, g (n), estimated by the spectral data
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Fig. 7.19
Calculated and experimental energy levels
for Bamer series

The shape of the calculated energiesfits quite
well to thelevelsfrom the experimental data (quan-
tum mechanical levels). We aso see, that we have
referenced the model velocity only for n = 2, but
the obtained energy range spanswell for all Balm-
er series. The small discrepancy between the cal-
culated and the experimental data might be
contributed by:

- using idealised shape of the quantum orbit,
asshownin Fig. (7.9)

- The IG law through LC space is different
than in the empty space. In the former case the
leaked | G forces dependencein close distanceisin-
verse proportional to a distance at power larger
than 3. The power index is also dependable on the
absolute distance value.

The Balmer model output parameters for the
best fit, shownin Fig. 7.19 are following:

Kgs = 7.728 - aquasishrink ratio, valid for the
peripheral magnetic linesfrom the spin momentum
(referenced to Bohr surface)

Quantum orbits: 37 (2<n<38)

P = 5.474 - degree of inverse power |G low

through CL space

7.8.2.A Discussions:

The quantum efficiency for pumping the CL
spaceisnot considered in the Balmer model. When
investigating the molecular vibrational spectra in
Chapter 9, we will see, that it affects the CL space
pumping. Then in the Balmer model, the quantum
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efficiency will be a hidden parameter. This might
be the reason, why a velocity minimum appears at
n = 24. |t could be explained by the shape of the or-
bit. At n = 24 the orbital shape approachesthe Hip-
poped curve with parameter a=.3 and the
distance between the locuses of the Hippoped
curve - closer to the distance d (see Fig. 7.13). The
quantum efficiency at such shape of the orbit might
be a maximum.

The BSM model provides energy levels, con-
sistent to the levels, obtained by the optical spec-
trum (Fig. 7.19). So the velocity concept may be
considered as a correct parameter, including the
quantum efficiency as a hidden one. Then we may
calculate the quantum magnetic radius, by Eq.
(3.39) from Chapter 3. For velocity value of
1.079E4 m/sec correspondingto n =24 we ob-
tain for the small magnetic radius:

(Foq = 5194x10%) m.
Then the external magnetic radiusis:
(Re+Teq) <12x107°7 m

The quantum magnetic radius of the quantum
orbits with lower quantum number is even smaller.
Consequently the quantum magnetic radii for
all orbits of the series are inside the Bohr sur-
face.

Note: The quantum magnetic radius is esti-
mated by the analysisin Chapter 3, where arepeat-
able motion in a quantum loop is not taken into
account.

The Balmer model unveils one specific fea-
ture of the orbiting electron. When the electron
drops to lower orbit, despite the fact that it obtains
alarger velocity, its potential energy islower, due
to the IG forces. When such transition occurs, the
energy difference will be emitted to the external
space as a quantum EM wave - a photon. Conse-
quently the emitted photon carries a portion of
potential energy, belonging to the I G forces be-
tween the electron and the proton.

The above conclusion is of great importance,
becauseitisvalid for theenergy levelsof all atoms.
In fact the weight of the |G energy contribution
increases with the Z number of the atomic ele-
ment.

The electron’s geometrical parameters, valid
for free CL space has been used without change in
the model. Consequently, the fine structure con-
stant, which appears as embedded parameter of the
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electron geometry is aso not changed inside the

Bohr surface. The both proper frequencies of the

electron as a system are al'so unchanged. These re-

sults obtained for the volume of the spectral line or-
bits should be also valid for the total volume inside
the Bohr surface.

Investigating the separate contributions for
the shape of the Bamer plot we may see that the
change of inertial mass could not affect significant-
ly the output result. The main contributors are the
|G field and E-field. The E-field in fact is control-
led by the IG field due to the charge unity mecha-
nism. Consequently:

» theenergy of theorbiting electron isdefined
mainly by the |G energy of the system.

This feature may be considered valid also for
the heavier atomswhere the |G energy of the nucle-
us contributes to the energy of detected emitted or
absorbed photon. (In such aspect the inertial mass
contributes only a small correction on the cenrap-
etal acceleration force).

The above conclusion is one of the major
distinct parameter between the BSM model and
the Bohr model of the Hydrogen atom. This
leads to the following major distinctions between
both models:

Summary:

* Major distinctions between Bohr model of
Hydrogen and BSM modd!:

In the Bohr model, the orbit with a length
of 2ra, iSthe most internal orbit.

In the BSM model, the orbit with a length
of 2rna, isthe most external possible orbit
* Thesgpectral linepositionsin theseriescarry

signatures of: the | G filed, the E-field, and
the electron inertial massinside the Bohr
surface

» Theresolvable spectral linesarein the
range of velocity inversion

» The magnetic radius of the electron for all
guantum orbits could not appear outside of
the Bohr surface.

» Thetwo proper frequenciesof theelectron as
asystem arenot affected by the properties of
the space volume enclosed by the Bohr sur-
face.
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7.8.3 Orbital time

From the concept of CL space pumping and Balm-
er series model it is apparent that the CL space is
pumped during orbital circling of the electron, and
after the electron falls to alower orbit the pumped
energy isemitted as a photon (quantum wave). The
well determined energy of the photon indicates that
the electron makes a whole number of orbital cy-
cles. Thisisin agreement with the relation between
conditions of whole number of cycles discussed in
87.7.1. Thisrelation is shown in the following ta-
ble:

Phase repetition  e- rotations internal
condition positron-core cycles
short time 18778.3(3) 56335

long time 56335 2573380

The phase repetition time could be consid-
ered asanecessary but not enough condition for the
finite time of the electron on orbit. In the Quantum
mechanics (QM) thistimeisknown asalifetimein
activated state. It is a constant for a spontaneous
emission, whileitisshorter for stimulated emission
used in lasers. The QM could not provide an expla-
nation of the physical mechanism, that determine
this time. Now the possible explanation could be
given for afirst time.

The condition that defines the limit time du-
ration of the orbit according to BSM is reduced to
a possible number of full orbital cycles according
to the considerations of the phase repetition. The
second factor that may influence the possible
number of orbits could be related to the short mag-
netic line condition. This condition is valid simul-
taneously for the axial and peripheral magnetic
lines created from the electron’s motion. While the
axia lines are related with the g, , valid for the
external free CL space, the peripheral lines are re-
lated with the shrunk ig,,, valid for the orbital
space inside the Bohr surface. Obviously both con-
ditions comes in conflict after some finite time
from the beginning (when the electron start circling
in the particular orbit). This could be inferred from
the analysis of the relation between the CL space
relaxation constant and orbital timefor thetwo cas-
es. axial and peripheral magnetic lines.
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For the axial magnetic lines the CL space
constant isty. For the peripheral magnetic linesthe
guasishrunk CL space constant follows the same
dependence on the distance from the proton core as
the parameter 1A, given by Eq. (7.15).

The orbital time from the Balmer model is
obtained by division of the orbital length (Eq. 7.16)
by the orbital velocity (plotted in Fig. 7.1).

I-orb(n)

e (7.23)

torb(n) =

Two plots of Eg. (7.23) for short magnetic
line conditions: applied for axial and peripheral
magnetic lines are shown in Fig. 7.20. The time
scale is multiplied by factor of 3 for a reason ex-
plained later.
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Fig. 7.20

Trend of the short magnetic line conditionsin
function of quantum number

1- for the peripheral magnetic lines

2- for axial magnetic lines

The quantum numbers are in the scale

of curve 2, related to the quantum number of the orbit.

We seefrom the plot that the trends of thetwo
curves are different. While their relative position
might be influenced by the properly determined
guasishring index, their trends will be always dif-
ferent. But this difference means that a conflict be-
tween the two types of magnetic line conditions
may occur for a finite time of the electron on the
particular orbit. The quantum features of the CL
space and the el ectron system oscillation may make
the conflict to occur in the time when the oscilla-
tion passes through theinitial phase. Then the elec-
tron falls to lower orbit. The most probable lower
orbit is the ground state orbit of the series.
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The provided considerations has to been
combined with the conditions of the phase repeti-
tion between the two proper frequencies of the
electron and the CL node Compton frequency. This
issue has been discussed in 83.12.2.A.

The developed concept is valid for a single
Hydrogen atom only. The obtained lifetime should
not be confused with the cases of long lifetimes for
some atoms or molecules. In the latter cases quite
long lifetimes may result from different mecha-
nisms involving complex interactions between
multiple orbits.

Summary:

» Thespontaneouslifetimeisdefined by the
mechanism of the short magnetic lines,
strobed with the effect of the phase match
conditions between the two electron proper
frequencies and the Compton wavelength of
the CL nodes

* In case of spontaneous emission the lifetime
of the exited state for Balmer seriesisequal
tothreeorbital cycles of the electron.

» Theorbital time could not be shorter than
one orbital cycle of the electron

» Thefinitelifetimeisaresult of conflict
between axial and peripheral short magnetic
line conditions, developed for afinite time of
the electron motion in the proton E-field.

7.9. Photon emission and absor ption. Physical
explanation of the uncertainty principle.

Let analyse the electron motion in one orbit
of Balmer series above the GS orbit. The induced
peripheral magnetic lines by the spinning electron
are in the region inside the Bohr surface. During
the stable motion of the electron, the Hydrogen ap-
pears neutral outside the Bohr surface. Conse-
quently the electron momentum is able to
neutralize the distributed E-field lines inside the
Bohr surface. The CL space interaction will bal-
ance this momentum, so it will contain a balance
energy. This energy is distributed in the orbital
trace, formed by the el ectron quantum magnetic ra-
dius (see Fig. 7.7). The energy, kept in the vol-
ume swapped by the magnetic radiusispossible
due to the shorter refreshing cycle, supported
by the orbiting electron. Due to the finite orbital
time, determined by the short magnetic line condi-
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tion conflict (described in the previous paragraph),
the motion in agiven orbit may be terminate by two
possible ways:

(a) the electron falls to lower orbit

(b) the electron jumps to higher orbit, if the
proton club space has received external energy ina
proper time.

Photon emission. The case (a) mentioned
aboveisrelated with aphoton emission. Thetermi-
nation of electron motion in the current orbit termi-
nates the volume energy refreshing. The excess
energy is a difference between the electron ener-
giesin thetwo orbits. Thisenergy distributed in the
former trace is in conflict with the proton E-field
inside the Bohr surface. Now regarding the excess
energy volume as running EQ’ s they are pushed in
direction to less intensive |G field (for the line se-
ries, the IG field predominates the E-field). The
running EQ’s carrying an excess energy above the
ZPE, are refurbished in a quantum wave (photon),
with wavelength corresponding to the total excess
energy. The most probable transition to lower orbit
isthe transition to the GS orbit of the series. In this
case the conditions of quantum orbit are always
present. This is the case of spontaneous emission.
For any other transition to orbit higher than the GS
additional conditions are needed.

Photon absorption. An electron in a lower
orbit may jump to a higher one, if obtaining an en-
ergy in aproper time, referenced to its orbital time.
This is a process of absorption. The absorption of
photon, also isnot instantaneous process. It may in-
volve number of orbital cycles. It is well known
from the quantum mechanics and the experiments,
that the total energy of the photon is transmitted to
one electron. But how the energy of the quantum
wave wavetrain occupying much larger volume
than the proton, is shrunk into the internal space of
Bohr surface? The only possible option isto accept
an energy dumping effect of the combination of
the proton space inside the Bohr surface and the or-
biting electron (in analogy with a dumping effect
for mechanical waves, propagated in a stiff media).
If considering a solid optical detector, the size of
the quantum wave usualy covers many protons
with their Bohr surfaces. In order to start the dump-
ing effect, however, the orbiting electron has to
posses a proper phase referenced to the proton club
and matching the quantum time condition. Then
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the energy dumping effect selectively startsfor one
electron, whose quantum orbit conditions are clos-
er. Once the dumping is started, the whole energy
of the quantum wave is sucked, contributing only
to the energy of this electron. The process is not
simple and may involve number of nonlinear fac-
torsinsidethe Bohr surface. Theintuition for apos-
sible nonlinear factors comes close to mind if
analysing the experiment described by L. J. Wang
et al. (2000).

Heisenberg uncertainty principle. The
emission and absorption processes are able to pro-
vide explanation of the Hisenberg uncertainty prin-
ciple, applied to the electron maotion in the atoms.
Itisevident, that emission and absorption process-
es are related with many orbital cycles. The both
processes have a finite time duration. The receiv-
ing system, however, will get the energy only at
theend of theprocess. Inacaseof areal detection
system, even with a super fast detector, the de-
tector system will get the energy only when the
electron quitstheorbit (the corresponding atom
isionized).

CL space pumping. If the electron in GS or-
bit, for example, gets some energy from absorbed
photon, it jumps to a proper higher orbit, but stays
here a finite time and returns back, most probably
to the GS. In this case the same obtained energy is
reemitted. We may regard the process as a CL
Space pumping, a terminology, used in previous
chapters. Variety of CL space pumping processes
exist, some of which, have been already discussed.
One of them was the CL space pumping in the pos-
itronium (see 83.17.3). There is one common fea-
ture between both processes of CL space pumping.
In the positronium transition 13s, - 23s, , the emitted
photon energy is (13.6-34)2=51ev. SO it is refer-
enced to the common centre of mass in respect to
the fixed CL nodes of the laboratory frame.

In the case of Hydrogen atom, the proton
mass is much larger than the electron one, and the
proton could be considered as a carrier of local
frame. In case of the Ps 13s, -23s, transition (see
83.17.3), both, the electron and the positron are os-
cillating. Their centre of mass, however, is deter-
mined by their different quantum velocities,
corresponding to 13.6 eV and 3.4 eV. They have
one and asameinertial mass but oscillating around
acommon centre of mass with different velocities.
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I n fact the common centreof massisnot fixed in
CL space, but oscillating. For this reason the
difference between 13.6 and 3.4 eV isadditional-
ly divided by two. The physical explanation of this
effect without taking into account the CL space is
not possible.

Some very low energy photons, from the Hy-
drogen emission spectra, also may get physical ex-
planation, when considering the CL space
interaction. During the photon emission the Hy-
drogen atom gets a kick in opposite direction. Due
to the orbital quasi plane twisting shape, the Hydro-
gen gets simultaneous spin momentum. This mo-
mentum may cause emission of another quantum
wave, with much lower energy. This may explain
the Hydrogen emission at 21 cm coming from the
space.

7.10 Electron spin and fine structure line split-
ting

According to the quantum mechanics, the
electron motion is characterized with two spin val-
ues. Let call this parameter a QM spin, in order to
distinguishit of from the spin momentum, that isan
angular momentum of the electron confined mo-
tion. But what isthe physical meaning of QM spin?

The QM spinisinitially introduced with pur-
pose to explain the spectral line splitting of theline
series. This splitting is larger for transitions be-
tween orbits with lower quantum numbers. This
feature indicates that the QM spin is related to the
velocity direction, referenced to the proton club
guasiplane. The quasiplane has atwisted shape, de-
termined by the twisted shape of the proton core. It
is enough correct to say, that the quasi plane posses
a chirality determined by the twisted shape of the
proton. This chirality, namely, is areference point,
allowing two opposite QM spinsvalueto be distin-
guished. For orbit with one and a same quantum
number the orbiting electron may move in two dif-
ferent directions, distinguished by the proton hand-
edness. Its energy in both cases, however, should
be dlightly different. Such energy differenceis de-
tected by as closely separated spectral lines. The
separation is larger for orbits closer to the proton
core, because |G field is stronger in this region.
This effect isknown as afine structureline split-
ting.
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All this considerations are valid only in
electron motion in quantum loop, and when the
shape of the loop is defined by a presence of a pro-
ton. For motion in open tragjectory away of the def-
inition conditions of the proton, the QM spin losses
asense. It should not be confused with the electron
system polarization effect, characterized with in-
voked radial motion of the internal positron, after
an electron beam is reflected by a solid surface un-
der angle.

Summary:

e TheQM spinisaphysical parameter related
to the match or mismatch between the chi-
rality of the electron spin rotation and the
chirality of the proton.

7.11 Pauli exclusion principle. M agnetic fields
inside the Bohr surface.

According to Pauli exclusion principle one
orbit could be occupy by no more than two €elec-
trons. When the orbit is occupied by two electrons,
they have opposite spin.

These conditions are reasonable, for al
kind of orbits, passing through the proton club. In
BSM concept the opposite spins means, that the
two electrons circle the same orbit but in opposite
directions. In Balmer orbits they pass simultane-
ously through the proton clubs near the locus.
However they do not collide because:

- the guiding role of the magnetic field and
the repulsion of the E-field of the electrons

- the orbits are pretty close, but not exactly
the same due to the interaction between the axia
spin of the electron and the helicity of the proton.

The motion of two electrons in a common
orbit isillustrated by Fig. 7.21.

The instant positions of the two electrons
become synchronized each other, so in any mo-
ment they have symmetrical positions, referenced
to the quasiplane of the proton club. The instant
symmetry in one particular moment isillustrated in
Fig. 7.21. We see that a kind of symmetry exists
between two electronsin one orbit. This symmetry
in fact is supported by the induced magnetic field.
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Fig. 7.21
Instant position symmetry of two electrons
with opposite QM spin, occupying one quantum
orbit of Balmer series

It is evident, why the two electrons can’t
possess one and a same spin. The opposite QM
spins alow their magnetic fields from the orbital
motion to be mutual compensated with asymmetry
referenced to the proton club. The magnetic lines of
thesefieldsare normal to the orbital plane. We may
call thisfield an orbital magnetic field. Thisfield
has a different configuration than the magnetic
field induced by the spin (rotation) momentum of
the electron. In the vicinity of the electron, the
magnetic lines of the both fields are normal each
other and do not interfere. The orbital magnetic
field, however is created in aE-field CL space, in-
side the Bohr surface, where the g, is different
than the g, of the external CL space. For this
reason the created magnetic lines may not be
able to make paths outside of the Bohr surface.
Therefore, they are closed inside. This feature ex-
plains the fact that the orbiting electron does not
exhibit external magnetic field. This is valid not
only for single, but also for pair electrons that con-
vert the atom to a negative ion. The negative ion
possesses completely symmetrical charge feature
asthe positive one, despite the completely different
dynamics inside the Bohr surface.

From the above analysisit becomes evident
that similar conditions for more than two electrons
are not possible. Said in a smple way, two elec-
trons “complete”’ the orbit (according to the Pauli
exclusion principle), because no more than two or-
bits of opposite Quantum Mechanical spin are pos-
sible.

Summary:

» Physical meaning of the Pauli exclusion prin-
ciple: two electronswith opposite QM spins
posses two individual symmetrical orbits
with one and a same orbital quantum condi-
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tions. Such conditions are not possible for
mor e than two electrons, because the mag-
netic field symmetry is disturbed.

* Theorbital magnetic field from one or pair
electronsin theorbit isenclosed inside of the
Bohr surface, dueto the different SPM fre-
quency of the E-field CL space from the
external free CL space.

* Thenegativeions does not exhibit external
magnetic field despite the second or biting
electron, for the same reason.

7.12 Superfine spectral line structure

During the photon emission, the excess ener-
gy kept so far inside the Bohr surface getsafast es-
cape as an emitted photon. The local gravitational
field of the proton serves as areference frame. Itis
reasonabl e to consider, that the proton exhibit reac-
tion force during the moment of the photon shot.
Duetoitslargeinertial massit getsadlight kick. Its
helicity and twisted orbital shape of the circling
electron, converts part of the kick momentum to a
nuclear rotation. The emitted quantum wave have a
finite wavetrain length and consequently a finite
emission time. So the kick effect is able to influ-
ence the photon emission, providing in such way a
small frequency shift, asared Doppler shift. In the
same time the proton has some left over energy as
asmall spin momentum. In some moment this ro-
tational momentum may become in conflict with
the orbiting electron. The atom could free this en-
ergy only as an emission of alow energy quantum
wave. The energy of the emitted in this case pho-
ton, however, depends also on the current status of
the QM spin of the electron. The signature of this
dependence is the superfine spectral line struc-
ture.

In the atomswith higher Z number, the super-
fine structure may have more splittings, due to the
orbital interactions effect. Thelatter isdiscussed in
Chapter 8.

7.13 Lamb shift

In QED the Lamb shift is known as dis-
placement of the GS (ground state) level from its
position, estimated by the difference between the
expected energy level and the rea one. Thisis ob-
servable from Hydrogen to higher Z number of e-
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ements. The Lamb shift increases with the Z
number.

Let considering the Bamer series. The or-
bital shape and dimensionsof all orbitsinthe series
with exception of the GS orbit are defined only by
the quantum conditions. Only for the GS orbit ad-
ditional conditions appear for termination of the
guantum loop condition. It isrelated with the quan-
tum magnetic radius interference with the proton
core (see §7.8 and Fig. 7.11). So it is very reasona-
ble the lowest orbit quantum condition (corre-
sponding to the GS) to appear dlightly displaced.
The orbit deformation gives dslight shift of the
guantum position, estimated by the Quantum me-
chanical model. The deviation from the exact quan-
tum value becomes observable, because this orbit
is closer to the proton core. In this range the IG
forces are stronger and are proportional of higher
inverse power degree of the distance. For asimilar
reasons, the orbit deformation and the quantum
shift for GS orbits in atoms with higher Z numbers
islarger. It isalso evident, that the Lamb shift may
appear only for GS orbits near the proton core. This
condition is valid not only the Lyman and Balmer
GS orhits in the Hydrogen, but also for the corre-
sponding similar orbits in the heavier elements.

7.14 Zeeman and Stark effects.

The Stark effect is a spectral line splitting as
aresult of applied electrical field. The Zeeman ef-
fect isa spectral line splitting as aresult of applied
magnetic field. In fact the Zeeman effect could be
also aline shifting. The detection effect may pro-
vide a signature of line splitting as a result of the
following conditions:

- detection of photons from different atoms

- consecutive photon detection from one and
same atom but with different orientationsin respect
to the applied field

In order to explain the physical process, we
will use the term line shifting. There are two major
differences between the both effects. In the Zee-
man effect, two different type of shifting are ob-
served: for small and for large intensity magnetic
field. The Stark effect does not exhibit such phe-
nomena. These differences helps to identify the
physical process.
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In the Stark effect, the applied electrical field
deforms the shape of the Bohr surface. This may
influence the position of the quantum orbits. The
orbital energy level is very dependent of its posi-
tion, because the strong gradient of the I1G field.
Thegradient isalso larger for orbitswith low quan-
tum numbers.

In the Zeeman effect, the applied magnetic
field could not influence the Bohr surface. The
Bohr surface, by definition, is generated by the
static E-field of the proton and should be not affect-
ed by a magnetic field. The applied magnetic
field, however, may generate magnetic linesin-
sidethe surface, that could influence the or bital
quantum conditions. The penetrating magnetic
lines may obtain loops closely to the magnetic
fields generated by the orbiting electron. Having in
mind the both quantum conditions, defining the
quantum orbit (see § 7.7.3), it is close to the mind,
that the two types of the Zeeman effect are related
with them:

(a) caused by low intensity magnetic field

(b) Caused by high intensity magnetic field

The low intensity magnetic field may not in-
fluence the short magnetic line quantum condition,
related with the axial magnetic lines of the electron.
The volume of this field possesses very small
thickness (smaller than the Compton radius). But
it may affect the quantum loop condition, of pe-
ripheral magnetic lines, whose volume is much
larger.

The higher intensity magnetic field may af-
fect the both type of short magnetic line quantum
conditions. Having in mind, that the SPM frequen-
cies of the applied magnetic field and the axial
magnetic lines are both equal, the stronger field
may provide a different type of line shifts in com-
parison the weaker one.

7.15 Cross validation of the Hippoped curve
concept, for the shape and dimensions of the
proton and the quantum or bits.

Here we will summarize, briefly, the cross
calculations and validations, some of which are
used so far and others - given in the next Chapters.
The knowledge of the shape and dimensions of the
proton, neutron, electron, and the quantum orbits,
isvery useful for understanding the structure of the
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atomic nuclel and their physical and chemical
properties.

A. Shape and dimensions of the electron asa
system of three helical structureswith internal
rectangular lattice (twisted)

- Static and Dynamic CL pressure ex-
pressed by the el ectron volume and surface, involv-
ing the Compton radius (wavelength) Plank
constant, light velocity and fine structure constant

- Magnetic radius, calculated by the mag-
netic moment the Compton radius and number of
physical constants

- Relation between the electron static
charge and the quasiparticle waves in the beta de-
cay (virtual electron and positron)

- X-ray properties of the electron

- Electron system modifications and proper
frequencies validation by experimental data of
FQHE

- CL space pumping and proper frequency
validation by the Positronium

- Electron system modification in Super-
conductivity state of the matter

- Internal gravitational lattice structure val-
idation by the destruction energy (tau lepton at
1.7778 GHz and the resonance at 1.44 GHz

- electron and muon magnetic moments,
mass ratio and their physical meaning

- derivation of relativistic gamma factor by
the dimensions and property of the moving and os-
cillation electron

- quantum motion of the electron and its
confined motion in a quantum, as a property of the
guantum orbit

B. The proton shape and dimensions

- Matching the proton dimensions to the
calculation of the temperature of 2.72K with the
experimentally measured one in which the ideal
gas constant and Avogadro’ s number are involved,
together with other physical constants (Chapter 5);

- matching the mass ratio of the pion to
muon; the magnetic moment ratio between electron
and muon; mass bal ance equation of the proton (in-
volving al pions and kaon); mass balance equation
of eta particle; stopping ratio between proton and
antiproton; relation between Newtonian mass
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change due to FOHS twisting and electroweak pa-
rameter o/ = 28762 deg and Fermi coupling con-
stant; internal FOHS destruction energy ratio
between right and left handed structures, by tau
lepton equivalent mass energy at 1.7778 GeV and
the resonance energy at 1.44 GeV; the destruction
energy of untwisted K+ and K- (kaons) matching to
W+/- bosons; destruction energy of twisted K- by
Z boson; prediction of the destructive energy of
twisted K+ at 105 GeV; physical explanation of the
relation between the muon lifetime, Fermi cou-
pling constant and pion muon electron decay

- matching the proton dimension to the Balm-
er model

C. Neutron shape and dimensions

The dimensions of the neutron are obtained
directly from the proton, because the external dif-
ference is only in their shapes. While the proton is
atorus, but twisted in a shape of hippoped curve,
the neutron is afolded torus with a shape of a dou-
ble rings (with some small gap between the two
loops).

D. Proton and quantum orbit dimensions

- matching the proton and quantum orbit di-
mensions for atoms in molecules (Chapter 9)

- matching the dimensions calculated for
H, molecule ortho state and cross validating them
by data from optical molecular spectra and photo-
electron spectroscopy (Chapter 9).

Notice

In all cross validations only accurate physi-
cal constants and reliable experimental data are
used. All the sources of experimental data are ref-
erenced. The inclusion of CL space concept, helps
to explain the relation between the electric, mag-
netic and gravitational fields. It allows to explain
also the fundamental quantum mechanics rules,
and the relativistic featuresin a classical way. The
dimensions and structure of the atomic and suba-
tomic particle appears quite different, than the ex-
isting so far models and theories. The BSM
models, however matches quite well with the ex-
perimental dataand the observations from different
physical fields.
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