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Chapter 9. Molecules
The purpose of this chapter is to analyse the

quantum processes responsible for connection of
atoms in molecules by electronic bonds.
Notes: 
(1) Some aspects of the BSM concept about the
chemical bonds may differ from the existing so far
models. For this reason some new interpretations
of the experimental data is provided.
(2) The derived vibrational curves may differ from
the quantum mechanical vibrational curves espe-
cially in the limit region. The difference is due to
the different models. From a point of view of BSM,
the Quantum Mechanical (QM) models of the at-
oms and molecules appear as mathematical mod-
els. The QM models work in a space-time concept,
which has a physical properties but is regarded as a
void space. In such environments the interactions
analysed by the Quantum Mechanical models does
not provide information about the particle struc-
ture. The BSM models unveils this structures, but
the calculation of the interaction energy is more
complicated. For this reason only some simplified
BSM models for diatomic molecules are derived.
The advantage of these models is not in the accura-
cy of calculated energy levels but in the opportuni-
ty to determine the structural configuration of the
simple molecule. In the same time they permits un-
derstanding the conditions for connection of atoms
in molecules. This is not possible by the QM mod-
els. 

9.1 Type of chemical bond
The BSM distinguishes the following types

of chemical bonds
- ionic bond (IB)
- electronic bond (EB)
- IG field bond (IGB)
- Dipole induced bonds

9.1.1 Ionic bond
The BSM concept of the ions has been pre-

sented in §8.11. Let take example with NaCl,
whose bond is considered as ionic. The compounds
possessing ionic bonds exhibit two major features:

- The ionic compounds are usually dissolved
in water. This means that the positive and the neg-
ative ions become separated.

- The internuclear distances of the ionic
bonds are usually much larger than the covalent
bonds. This fact is in agreement with the BSM con-
cept of the ionic bonded molecules.

Fig. 9.1 shows a NaCl molecule in which Na+

and Cl- are connected by ionic bond. The elements
of the nuclei (protons and neutrons) and the possi-
ble quantum orbits are shown in one and a same
scale. The zone of the bonded protons is drawn as
ellipse. The interatomic distance in this molecule is
experimentally determined.

A first harmonic quantum orbit is not possi-
ble to be used for diatomic molecules in which ele-
ments of  are used. This rule is proved later in
this chapter after a theoretical analysis of the de-
rived Eq. (9.55) and its validation for simple dia-
tomic molecules. It is apparent from Fig. 9.1 that
the two ions could not be connected by a single
quantum orbit, because the distance between the at-
oms is too big. It is defined by the size of the radii
of the ions which are usually larger than the radii of
the neutral atoms. The bonds of such molecules are
based on the balance between the Column attrac-
tion forces and the properties of the proximity
fields of the protons and neutrons, which was un-
veiled by the BSM. As a result, the molecules with
ionic bond could not have a vibrational rotational
spectra like other types of bonding in which quan-
tum orbits are involved. 

  

                         Fig. 9.1
Ionic bond in NaCl; The number in bracket shows 
the subharminic number of the quantum orbit.
The closed loops 1 and 2 are magnetic lines formed
by paired eight quantum orbits arranged symmetrically
around the polar axis of CL- ion. Every such orbit con-
tains two electrons with opposite spins

Z 10>
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In summary, the main distinguishable fea-
tures of simple molecular compound with ionic
bonds are the following:
• The atoms connected by ionic bond does not 

possesses common electronic orbits. The 
binding energy is a result of attraction 
between the opposite charges of the ions.

• Due to the larger bond distance the IG forces 
are negligible in comparison to the electrical 
forces.

• Ionic bond compound can not exhibit a dis-
crete optical spectrum

9.1.2 Electronic bond
According to BSM, the electronic bond (EB)

between atoms connected in molecules are realised
by one or more common quantum orbit. Under this
category falls not only covalent bonds (between
same elements) but bonds between different ele-
ments, as well. Most of the chemical bonds in the
organic molecules are of EB type, others are of IG
type. From the Atomic Atlas we see, that the spatial
structure of the atomic nucleus of the different ele-
ments is determined by the proton and neutron spa-
tial arrangement. For the chemical compounds the
major role play the valence protons possessing
some angular freedom mostly in the  polar plane of
the atomic nucleus. The atoms are possible to be
connected in molecules by quantum orbits which
operates in a same physical principles like the
quantum orbits in the single atom. Additionally the
IG forces between the atomic nuclei must be con-
sidered. It is evident, that the spatial structure of the
molecule is determined by the spatial configuration
of the atomic nuclei in which the valent protons are
interconnected by quantum orbits. In some diatom-
ic or multi-atomic molecules, not all valence pro-
tons are possible to be EB connection, due to the
spatial restriction imposed by the atomic nuclei.

Electronic bonds are possible, not only be-
tween free valent protons (defining the principal
valence of the element) but also of EB bonded pro-
tons. In some reactions the weak EB bonds could
be broken and involved in internuclear EB bonds.
For instance, the elements with Z number larger
than 71, contain underlying proton shell with EB
bonds (lantanide bonds), that are not converted to

GBclp. In some strong chemical reagent (or cata-
lyst) they can be broken and  involved in internu-
clear EB bonds. Some compounds of Rn are of this
type.

9.1.3 IG bond and dipole induced bond
The IG type of bond is a result of IG attrac-

tion. In  the dipole induced bond the Wan der Walls
forces. From a BSM point of view the IG corre-
spond to some of the Wan der Walls forces. For this
reason dipole induced bond usually could not be
separated from IG bond. Compounds like ArHF
and Ar2HF contain such type of bonds. Investigat-
ing vibrational states of Ar3HF molecule and com-
paring the results to the theoretical one  J. Farrell et
al. (1996) found about 11% difference. This differ-
ence, according to BSM is due to the IG forces, that
are not considered in the QM model.

IG type of bonds exits in complex molecules
especially from heavy elements. The IG type of
bonds are usually weaker, than EB type.

9.2 Theoretical syntheses of chemical com-
pounds

The knowledge about the nuclear configura-
tion and the static and dynamical properties of the
atoms provides the opportunity for theoretical
structural modelling of chemical compounds. The
modelling  of simple dual or three atomic mole-
cules is an straight forward procedure when using
BSM atomic models. One useful verification for
the BSM modelling is a comparison of the obtained
structure with the VSEPR model of the molecules
if it is known. The VSEPR model provides angles
between the atoms in the molecules. This angles
are determined experimentally by X-ray crystalog-
raphy and other methods. The theoretical explana-
tion of VSEPR model, however, is not so
convincing than the BSM models. One argument in
favour of this statement is in the observed different
conformations of C4H4 molecule. This is due to the
polar shape of carbon atomic nucleus, that is not
apparent in the VSEPR model. In BSM model the
angular freedom of the valence bonds are defined
by the nuclear configuration. In summary:

• The angles between two atoms in a chemical 
compound with EB bond is determined by 
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the nuclear configuration, the angular free-
dom of protons involved in the internuclear 
EB bond and the IG forces between the 
nuclei

In Chapter 2 the quantum quasishrink effect
has been discussed in connection to the photon
wavetrain configuration. If considering this effect
in two directions in respect to some equilibrium we
may call it  a quantum quasi-scale change effect.

The nuclear size of any element is completely
determined by the size of the proton. It is not de-
pendent of the quantum quasi-scale change effect.
The quantum orbits, however, are dependable. The
change factor depends of the nuclear mass and in-
ternuclear distance. For the Hydrogen molecule it
may be small, but for heavier atoms is more signif-
icant. (This conclusion comes from the atomic
spectra).

The Atomic Atlas provides the nuclear con-
figuration by symbols for simplicity. In theoretical
synthesis of molecules, however, Hippoped curves
should be used for both, the proton and the quan-
tum orbits with their dimensions. I this case, how-
ever, the twisting properties of the proton and some
quantum orbits are not apparent. For simple inor-
ganic molecules two or more view gives pretty ad-
equate picture. The picture is more clear if only the
central sections of the atoms are shown. For atoms
with larger Z number the central nucleus contain
one or more Argon nuclei that could be shown by
oval. For drawing simplification there is not a need
to show the protons and neutrons in this central part
of the atomic nucleus. For more complicated or-
ganic molecules, however, the proton twisting af-
fects their spatial configuration. In this case some
special drawing program might be necessary.

The theoretical synthesis can be assisted by
the following rules and considerations:

- Spatial configuration of the involved ele-
ment (by Atomic Atlas)

- angular freedom of the free valence pro-
tons

- orbital pairing assuring the lower energy
state

- EB type of bond is usually stronger than
IG type

- considering the aggregate state

- vibrational properties of the synthesized
molecule and molecule, inferred by the molecu-
lar and photoelectron spectra

- validation of the obtained molecular con-
figuration by using data available by VSEPR
model and crystalography

The equation of the quantum orbit trace
length for free CL space was derived in §3.12.3
(Eq. (3.43.i)

                             [(3.43.i)]

where: n is the subharmonic number of the
quantum orbit

We may use the subharmonic number of the
electron motion for identification of the quantum
orbit. So a quantum orbit with a subharmonic
number of n, is a such orbit for which the electron
moves with velocity corresponding to a quantum
motion of subharmonic number of n (see Table 3.1
in Chapter 3). Then the ratio between the proton
length and the length of the first subharmonic orbit
is: 

.                           (7.4)
In this relation, the proton and the quantum

orbit, both are assumed to have a shape of a Hip-
poped curve with parameter . The shape of
the proton, practically could be considered stable
(at least for atoms with not very high Z number).
The quantum orbit shape, however, may be distort-
ed to some limit. In the equilibrium state of the
molecule, although, we accept (and later it will be
proved)  that it is not distorted.

 Initially we may consider that the size of the
quantum orbit is affected by the distributed E-field
inside the Bohr surface. This has been demonstrat-
ed by the Balmer model in Chapter 7. It is reasona-
ble to accept that the volume enclosed by the Bohr
surfaces of the individual atoms (connected by
electronic bonds) in the molecule are united (or
united Bohr quasispheres). In such way we may ex-
plain the lack of irradiative EM field while the elec-
trons are orbiting. The concept of united Bohr
quasisphere could be explained by a possible
synchronization between the IG fields of RL(T)
structures of the protons (deuterons) participat-
ing in the electronic bonds. So one question ap-
pears: Could the common orbit could be
quasishrunk as in the case of Balmer model of

Lqo n( )
2πao

n
------------

λc
αn
-------= =

Lpc/Lqo 1( ) 2.042685 2≈=

a 3=
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BSM? (keeping in mind that the quasishrinkage is
valid for the quantum CL space). In order to simpli-
fy the theoretical analysis in the beginning we may
analyse in first the boundary orbits for which a pos-
sible quasishrinkage approaches zero. But when it
is necessary we may use a star notation “*” sig-
nifying, that the orbital parameter is qua-
sishrunk.

For drawing purposes, we may use the ap-
proximate relation (7.4), referring the dimensions
of the quantum orbit to the dimensions of the pro-
ton. In such way we may select combinations of
quantum orbits with different subharmonic num-
bers and serially combined orbits, as well. The se-
lection option possibilities have been given in
Table 7.1 (Chapter 7).

It is more connivent to operate with the length
and width of the Hippoped curve instead of the or-
bital trace length. In such case, Eq. (7.4) and Table
7.1 (Chapter 7) could be used.

The proton length as a “length of a Hippoped
curve “ has been determined in Chapter 6 using 
Eq. 6.57. The same equation is valid for a quantum
orbit with parameter . So we have:

  A   - proton length
  A  - length of the first subhar-

monic quantum orbit (in free CL space)
where: 
For drawing purposes, if using the approxi-

mate ratio of 2 (see Eq. 7.4), the fractional error is
about 2%.

Fig. 9.2 provides drawings of the basic atom-
ic structures and set of available quantum orbits.
The quantum orbits are shown by dashed line and
annotated by their subharmonic number. Their
lengths have been derived for a free CL space
(without electrical field).

.

                        Fig. 9.2
   Basic atomic structures and quantum orbits

The basic atomic structure annotation is :
p - proton
D - deuteron
T -  tritii
He - helium
The horizontal lines in the middle of D , T

and He are neutrons.
Fig.9.3 illustrates EB bondings between at-

oms in the simple molecules H2, HD and H3.
.

                            Fig. 9.3
        EB bondings in some simple molecules

The H3 molecule is not very stable at normal
conditions. In space environments, however, its ion
H3

+ is observed. The atomic conditions providing
stability of this ion are different than those de-
scribed in Chapter 8 §8.11.1 about Na+ ion. The in-
tegrity of the molecule in H3

+ is preserved despite
the loss of one electron. A possible explanation
about such configuration is that the other two elec-
trons circle in common ring orbit, composed of se-
rially connected quantum orbits (this option is not
shown in the drawing). In absence of one electron
the excess positive change of the H3+ may still pro-
vide integration of the individual Bohr quasish-
phere into a common Bohr quasiphere, so the two
electron may circle in a common orbit composed of
serially connected quantum loops.

The hydrogen molecule appears in two differ-
ent states - Ortho and Para. The both states are dis-
tinguished by their molecular spectra and the molar
heat capacity. The Para state has a larger molar heat

a 3=
Lp 0.6277=
Lq 1( ) 1.366=

A  (Angstrom)  1 10–×10    m=
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capacity. According to BSM, the larger heat capac-
ity should correspond to a larger IG field, or the
protons should be closer. The Ortho state may have
two substates: Otho-I type and Ortho-II type. The
Ortho-II may appear only in very low tempera-
tures. The possible configurations of the Ortho-I
and Ortho-II states of H2 are illustrated in Fig. 9.4
a. and b. 

 Fig. 9.4. Ortho-I and Ortho-II state of H2 molecule

Fig. 9.5 shows the possible configuration of
H2 - para state.

                              Fig. 9.5
                  Para state of H2 molecule

In both ortho states the both electrons share
one orbits. So they have opposite QM spin. In Or-
tho-I, the orbit trace length corresponds to one
quantum loop of first harmonic. In Ortho-II the or-
bit trace length is a sum of two first harmonic quan-
tum loops (serially connected quantum loops). The
Ortho-II state may appear only in low tempera-
tures. The optical spectrum usually shows the sig-
nature of both ortho states and a para state as well.
The conversion between ortho and para state is also
more probable at lower temperature, and can be
conserved in a room temperature for quite longer
time.  At normal temperature, the mixture ratio be-
tween ortho-I and para state is about 3:1.

9.3 Concept of integrated Bohr surfaces
The integration of the Bohr surfaces between

the different protons within atomic nuclei was dis-
cussed in Chapter 7. In the chemical EB bonds, a
similar conditions are created between the Bohr
surfaces of the involved valence protons. Then
conditions for quantum orbits are created for the
EB bonding electrons. Fig. 9.6 illustrates the shape
of the covalent Cl2 molecule, where the two va-
lence Bohr surfaces are integrated into one.

The Cl2 molecule is drawn in scale. The inter-
nuclear distance is known by experimental data.
Some of the atomic weak EB are not exactly in the
drawing plane. Two of four GBclp are also shown.
The covalent bond is a EB type. If not considering
a quantum quasishrink effect (that we will see later
practically does affect the internuclear distance), its
length corresponds to a third subharmonic quantum
orbit (electron energy of 1.51 eV). In the right
down corner of the same figure, the Bohr surface of
the valence proton, when not involved in a chemi-
cal bond  is shown. It is evident, that the two Bohr
surfaces of the valence protons from different at-
oms might integrate into one surface. In this case
the shape of the individual Bohr surface could be
modified but the definition condition given by Eq.
(7.3.a) (Chapter 7)  is still valid. In such case the or-
bital conditions becomes similar as in the Balmer
series model, with the exception that the distance
between the two cores are not fixed.

a.

b.
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                          Fig. 9.7
                      Cl2 molecule

9.4 Molecular spectra as a signature of molecu-
lar oscillations
9.4.1 Difference between QM model and BSM
model of the molecular spectra 

Initial note: In order to distinguish the single
electron from multi electron system, in the atoms,
we will use the following terminology in this chap-
ter:

- electron (electron system according to
BSM, consisting of electron shell, internal positron
and central core)

- electron system (multiple electrons for at-
oms with 

The oscillating properties of the physical
models of atoms connected in molecules by elec-
tronic bonds should provide a molecular spectra
with discrete lines. The molecular spectra is the
most authentic signature of the molecule. The the-
ory of the molecular spectra is based on the Quan-
tum Mechanical (QM) model of the atom. From the
point of view of BSM (QM) is quite good mathe-
matical model providing almost excellent spectral
data. It is carefully adjusted by using number of
constants, most of which are experimentally tuned.
Although, as in the case of the atomic structure, we
could not make equivalence between the mathe-
matical model and the physical one. 

The goal of BSM is not to replace or cor-
rect the QM model of molecular spectra, but to
find out what are the real oscillating properties
of the atoms connected in molecule. 

Under oscillating motion we mean not sim-
ple but a complex type of motion. Let to see, what
are the parameters, making the QM model different
from the physical one.

- The atoms participates in a molecule as a
QM atomic model

- The QM orbital arrangement is different,
than the BSM orbitals, but the angles between or-
bital planes in some cases might be a similar

- The CL space environment in not consid-
ered in QM models

- The bonding orbital shape is different for
QM and BSM models

- The quasishrink factor with its depend-
ence of internuclear distance is not taken into ac-
count in QM model

- The IG forces controlling the quasishrink
space are not apparent in QM model

The QM model of the molecular spectra is
initially  based on the concept of rotated reduced
mass whose radius is changeable. While the CL
space and IG forces are not apparent, number of ad-
ditional rules are involved in the QM model, ob-
taining in such way quite good corrections for the
missing factors. The big success of the QM model
is based on the effect of energy conservation prin-
ciple, when working in quantum units and orbital
plane configurations (by s, p, d .. type of orbits).
This approach allows to simulate the real processes
by energy balances only. In QM model, the energy
oscillations are described by wave equations in
which hamiltonian operators are used. Proper se-
lection of  the solutions of these equation known as
wavefunctions with number of selection rules and
constants provide molecular spectra matching
quite well the observed spectra.

The QM model of the molecular spectra is
based on the Bohr type of atomic model. It also
deals preliminary with the electron configurations,
described by selected wavefunctions, correspond-
ing to f, p, d, s type of orbits, spin orbits couplings,
and number of additional factors describing the ar-
rangement of the orbits. In fact the orbits are pre-
sented as electron clouds, due to the uncertainty
principle used as an basic postulate in the QM.
While in the Bohr model all orbits above ground
state have a trace length larger than , in
BSM model, all their possible trace lengths are
smaller than . In other words, they can be
considered as enclosed inside the Bohr surface.
Fortunately the QM model uses the basic parame-
ters h, q, eo and mo, that are defined for the external
CL space. This approach matches to the Bohr
atomic model, where the orbits are larger than .
This fact removes the problem of the possible cor-
rections of this parameters in the quantum qua-
sishrink space, inside the Bohr surface. But from
the other side:  In the QM concept  of molecular
spectra, the quasishrink effect and the IG field
are both dismissed by the adopted concept of
Born-Operheimer approximation. 

Z 1>

2πao

2πao
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The Born-Operhimer approximation is in-
troduced in QM in order to neglect the nuclear con-
tribution. In fact if considering only the Newtonian
masses their contribution is negligible. In such case
the equation solutions get considerable simplifica-
tion. In result of this, however, the quasishrink ef-
fect and the IG field parameters become hidden.
Later some additional corrections are involved as a
particular rules, in order to correct the spectra, but
the above mentioned parameters  are left hidden.
Therefore, the obtained final solutions in fact de-
scribes the energy related with oscillating motion
of the electron systems of connected atoms. The
potential energy between the IG field of the at-
oms and their influence on the molecular oscil-
lations are not apparent  in the QM model.

According to BSM, there are two different
oscillating systems: 

- the bonding system
- the atoms with their electron systems. 
The bonding system includes the valent

protons (Deuterons) and the bonding electrons.
There is comparatively weak connection between
the bonding electrons and the atomic nuclear elec-
trons by their variety of magnetic couplings and
QM spin.

The oscillation can be understood only if
considering the energy balance in the very basic
level of the prisms interaction. This is the balance
between the IG (CP) forces and IG(TP) forces. It is
more convenient to work with energy balances of
IG fields. The system involved in such balance
should include not only the atomic nuclei and
bonding system, but the CL space as well. The
BSM provides a 3 dimensional real model of the
molecular structure, in which the both system,
mentioned above are quite distinguishable. One
major advantage is the knowledge of the dimen-
sions of the proton, neutron, the atomic nuclei and
the size and shape of the quantum orbits. Later in
this Chapter it will be shown, how both interacting
fields IG(CP) and IG(CP) are determined and in-
volved in the molecular oscillation process leading
to a photon emission (or absorption). 

The QM model, after applying the Born-
Operheimer approximation, deals primary with the
adopted configuration of the electron system (s, p,
d, ..), described by wavefunctions in which some
orbits are considered as common for both nuclei.

The model involves number of constants, whose
value are determined from the experimentally ob-
served spectra. The adjusted in such way mathe-
matical model provides vibrational rotational
spectra that matches quite well the observed   spec-
tra of the molecules.

We see, that the BSM model has a quite dif-
ferent approach  than the QM model. This leads to
the following discrepancy between the both mod-
els:

(a) The “fundamental” frequency or band,
according to QM terminology, in fact is a signature
of the binding electron system. It does not provide
the full picture of the nuclear motion in the mole-
cule.

(b) The real resonance frequency between
the two nuclei is much lower, than the “fundamen-
tal” frequency. 

(c) the process of molecular vibration and
rotation described by QM model, whose signature
is the “vibrational-rotational” spectrum, appears
quite different by BSM model.

(d) The QM model makes distinction be-
tween pure rotational and rotational vibrational
spectra, but the physical process is not quite appar-
ent 

The proof of the above statements will be
presented in the next few paragraphs. 

The adopted QM therm “vibrational-rota-
tional” spectra comes from the accepted initial
model of a “rigid rotor”.

The molecular oscillating motion, accord-
ing to BSM is quite different, than the QM concept,
but it provides the same type of spectra. It is quite
more logical for explanation and does not need the
use of the Heisenberg uncertainty principle. The
relativistic effects can also be clearly identified and
separated. So they could be analysed separately. In
such aspect, the BSM model is able to provide
analysis by a classical means. 

The QM mechanical model, tuned by
number of  experimentally determined constants,
provides pretty accurate molecular spectra. In
many cases we can use them as a reference, with a
purpose to unveil the real molecular motion.
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9.5 Molecular oscillating model of BSM

9.5.1 General considerations and features

9.5.1.1 Complexity of oscillations
The complexity of the molecular oscilla-

tions increases with the number of valent protons,
the atomic Z number and the number of atoms in
the molecule. Let make some categorization about
oscillation complexity:

(1) homonuclear diatomic molecules with
single valence

(2) not homonuclear diatomic molecules
with single valence

(3) covalent diatomic molecules with va-
lence larger than one

(4) linear three atomic molecules as HCN
(5) diatomic and poliatomic molecules with

consumed valences
(6) poliatomic molecules with not con-

sumed valences

9.5.1.2 Fundamental proper frequencies of the 
nuclear system and the bonding electron system

All the atoms exhibit high order helicity de-
fined by the twisted proton shape. So their motion
in CL space possesses translational and rotational
components. The same is valid for the molecules,
but simultaneously with rotational motion they vi-
brate. The dynamics of the molecules could be an-
alysed easier if separating them virtually into a
bonding system and nuclear molecular system.
This separation is valid only for molecules from at-
oms with Z number larger than two. 

- The bonding system involves those valence
protons that are connected by quantum orbits and
their electrons. 

- the bonding systems are in the middle be-
tween the atoms, while the atomic nuclei are in the
periphery

- The nuclear molecular system involves the
atomic nuclei participating in the molecule togeth-
er with their electrons. So the connected valence
protons with their electrons are not part of this sys-
tem. The above separation allows also to distinct
the integrated Bohr surfaces of the bonding system
from the Bohr surfaces of the individual atoms.

- The SPM vectors of the volume enclosed of
the bonding system (characterized by integrated

Bohr surfaces) and those of the nuclei may not be
synchronized

Differences between the bond system and
molecular nuclear system

Now let emphasize some differences between
formulated above two systems of the molecular
complex.

No one of the both systems possesses a single
proper frequency. There are few reasons for this:

- such type of system could not be considered
as a rigid  body system 

- the quantum interactions with CL space are
different for the electrons and protons (and neu-
trons). The parameters involved in the quantum in-
teractions are their magnetic moments. The
magnetic moments of the proton and neutron are
quite different than the magnetic moment of the
electron.

- a small change of internuclear distance in-
volves a large IG energy imbalance in comparison
to the electromagnetic energy

- the IG field controls the E-field inside the
Bohr surface of the bond system (this will be dem-
onstrated by the analysis of H2 molecule oscilla-
tions)

In result of these considerations, the both sys-
tems exhibit not a single proper frequency but set
of proper frequencies. For simplification of the
analysis, we may consider, that each system posses
own equivalent fundamental frequency. Such
frequency is a centre of mass of the proper frequen-
cy set with specific distribution.

In case of simple molecules H2 ortho-I and
D2 ortho -I, the both systems, generally valid for
atoms, degenerate into one system (equivalent to a
bond system) with one equivalent fundamental fre-
quency. Due to the quantum interactions it appears
as a set of frequency in the far IR range of the spec-
trum, known as rotational spectrum.

Equivalent molecular fundamental frequency 
The equivalent  molecular fundamental fre-

quency according to the quantum mechanical con-
siderations for diatomic molecule could be
described by the classical equation

                                           (9.A.1)fn
1

2π
------

kn
M
-----=
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where: kn is a force constant expressing the
inertial and quantum properties of the atom

 M - is a reduced Newtonian given by the
combination of the two nuclear masses ma1 and
m2.

                                         (9.A.2)

It is more convenient to express the frequen-
cy in wavenumbers,  in units of  cm-1, because
this is the most common used parameter in the IR
spectroscopy. 

   [cm-1]                             (9.A.3)

The Eq. (9.3) is in agreement with Bohr
atomic model, where, the nucleus is very small in
comparison to the orbit radius. This means than
the influence of the nucleus on the spatial posi-
tion of the orbit plane could not be defined. 

 In the BSM model of Hydrogen, the spatial
position of any orbital plane (or quasiplane) is well
defined by the spatial position of the proton quasi-
plane. Consequently the large magnetic moment of
the electron will influence the inertial properties of
the neutral Hydrogen. The same conclusion should
be valid for the bond system in any molecule (with
electronic bond).

The above considerations require correction
of the inertial mass M. participating in the classical
Eq. 9.3. For H2 -ortho-I molecule the equation take
a form

                                     (9.A.4)

where: kp - is a strength (force constant) of
the proton pair bond, mp is a proton mass,  - is
a magnetic moment ratio 

In many molecules bonding pairs of deuter-
ons instead of protons are mostly involved. Their
strength constant is different and could be denoted
as kd. The Eq. (9.4) could be generalise to any dia-
tomic molecule or group. For a homonuclear mol-
ecule it takes a form: 

          (9.A.5)

where: k is a strength of proton or deuteron
bonding pair, b - is the number of bonding pairs, Z

- is an atomic number, N - is the number of neu-
trons in the atomic nuclei,  is the neutron mag-
netic moment.

Some aspects about the BSM considera-
tions:

The hadrons (proton, neutron) have larger in-
ertial mass than the electrons, but smaller magnetic
moments. The electrons have smaller inertial mass,
but larger magnetic moments. The nuclear electron
system is carried by the nuclear hadron structure,
whose IG field simultaneously defines the electri-
cal charge and E-filed configuration inside the in-
tegrated Bohr surface. (Note: the integrated Bohr
surface may have a shape of manifold). In the same
time the large magnetic moment means a large in-
teraction with a CL space. So the nuclear electron
system may influence the motion of the nuclear
hadronic system.

The above BSM considerations are not taken
into account in the Quantum Mechanical model of
the molecule based on a the Bohr planetary atomic
model, were the nucleus is comparatively quite
small.

The strength of the molecular bond depends
of the internuclear distance. The latter may take
different quantum values from the allowed set of
quantum orbits. In any single value of this set there
are additional quantum conditions due to the quan-
tum quasi-scale change effect that affect the orbital
conditions. The kinetic energy is a factor dependa-
ble of the quantum orbit parameters. In result of
this dependence, the fundamental molecular oscil-
lations exhibit not one, but set of molecular prop-
er frequencies.  

The set of the molecular proper frequen-
cies could be considered as a proper resonance
frequency modified by the quantum orbit condi-
tions and internuclear distance.

Optical signature:
The molecular proper frequencies are com-

paratively lower than the bonding system frequen-
cies discussed in the next paragraph. In the
vibrational level with higher energy their contribu-
tion to a CL space pumping is quite small in com-
parison to the contribution of the bonding system.
For this reason their optical signature may be iden-
tified in the lowest vibrational level. The lowest
level according to BSM  corresponds to the inter-
nuclear distance at equilibrium. The optical signa-
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ture of the molecular proper frequencies appears at
this level and is known as “pure rotational” spec-
trum.

The definitions “vibrational-rotational” and
“pure rotational”  comes from the Quantum me-
chanical model. According to BSM real physical
model, however, the oscillations are of mixed type.
The rotated molecule vibrates simultaneously with
the equivalent fundamental molecular frequency.
This vibration in fact is involved in the CL space
pumping and photon emission, while the rotation
energy is  constant during the process with optimal
angular velocity dependable of the molecular ki-
netic energy.

While the optical contribution of the molecu-
lar frequencies in other vibrational levels are not
apparent, it does not mean that the corresponding
oscillations are absent. In the oscillating process
providing “vibrational rotational” spectra they are
persistent.

 Equivalent proper frequency of the bonding 
system

The bonding electron system is connected
strongly to the bonding protons and weakly to the
nuclear electrons by the QM spin and orbital mag-
netic coupling. These interactions take place in the
volume enclosed by integrated Bohr surfaces. This
system is also not a rigid system so it exhibits mul-
tiple proper frequencies. Their optical signature  is
a set of spectral lines with more complex arrange-
ment in P R and Q branches (the Q branch is addi-
tionally dependable of the of the bonding type and
may be absent in some configurations). The line
distribution and the envelop of these branches de-
pends of number of factors, that will be discussed
in the following paragraphs. The spectrum of the
bonding system is also centred around one average
frequency, that could be accepted as an equivalent
proper frequency of the bonding system. In the
Quantum mechanical model of rigid rotor this fre-
quency is known as a “fundamental frequency”. 

Basic differences between optical spectra gen-
erated by the bonding and nuclear systems

The vibrational motion of the both systems
are mutually dependable, because they have lot of

common parameters. The optical spectra, however
show some basic differences.

(a). The optical spectra of molecular proper
frequencies (“pure rotational spectra” according to
QM model) is in the longer wavelength  range
(FAR IR) approaching the radio frequency range. 

(b) the line width of the optical spectra gener-
ated by the binding system frequencies are much
narrower, in comparison to those of the molecular
proper frequencies (given by the pure rotational
spectrum)

About (a): The bonding strength parameter kn
is dependent mostly of the number of connected
valences and the possible orbit from the quantum
orbit set. So its variation with Z number is restrict-
ed to a finite sets of values. The  parameter, how-
ever, does not have such restrictions. Therefore,
the equivalent molecular fundamental frequency
tends to increases with the atomic number. This
means a tendency of their optical signatures to-
wards longer wavelength range.

About (b): 
In the molecular proper frequencies, all elec-

trons of the nuclei are involved in a CL space
pumping. The pumping efficiency, however is
small, because the nuclear orbits have fixed but dif-
ferent plane orientations. The integrated Bohr sur-
face for any nuclei may have a shape of manifold.
In such  case the pumping and radiation efficiency
of the system are a partly deteriorated. In result of
this the emitted light is not so monochromatic, i. e.
the line width is broader.

For the bonding system, the CL pumping and
radiation conditions are different. A single bond of
pair valence protons (deuterons) possesses a com-
mon quantum orbit, occupied by two electrons (for
a neutral molecule). This provides an optimized
conditions for CL space pumping and photon radi-
ation, so the line widths are much narrower. 

Summary:
•  A vibrating homonuclear diatomic molecule 

is characterised by two different equivalent 
fundamental frequencies: one for the nuclei 
and a second  - for the bonding electron sys-
tem

• The two equivalent frequencies are dependa-
ble of the internuclear distance and quantum 

M
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orbit conditions. In result if this they appear 
as sets, denoted as proper frequency sets.

• The both frequency sets put own signature 
on the vibrational motion of the atoms and 
CL space pumping capability of the system .

• The direct optical signature of the molecular 
frequency set is the “pure rotational” spec-
trum at the equilibrium distance between the 
nuclei. 

• The H2 and D2 molecule are excluded from 
the general concept of molecular separation 
into a two system, because their nuclei are 
directly involved in the bonding system. 
However their analysis is quite useful for 
determination of the features of the two sys-
tems.

9.5.2 CL space pumping and radiation (absorp-
tion) capability of the bonding electron system

The bonding electron system includes the
bonding electrons connected to the bonding va-
lence protons. The vibrational motion between the
atoms affects directly the bonding quantum orbits,
characterised with their quantum energy in condi-
tions of a quantum quasi-scale change (for length)
CL space. Every bonding pair of protons possesses
own quantum orbits with electrons, with relatively
high freedom for CL space pumping and radiation
(or absorption). The process, however is synchro-
nised to some extend with other bonding pairs and
the molecular oscillations.

The main distinctions in the optical spectra
related to the proper frequencies of the bonding and
molecular nuclear system are the following:

- the signature of the fundamental frequen-
cy of the bonding electron system is a series of
lines, spaced much closer, than the frequency set of
the fundamental molecular frequency.

- the lines series follows a specific progres-
sion

- the lines are much narrower in comparison
to the lines generated by the proper molecular fre-
quencies.

Notice: We must point out some difference
in the terms “fundamental frequency” used in the
BSM model and QM model.

The term “fundamental vibrational fre-
quency” used in the QM model, is relevant to the
fundamental frequency of the bonding electron sys-
tem used by BSM model. In QM model, the Srod-
inger equation for harmonic oscillator (see D. A.
McQuarrie, p.p 162, (1983) does not contain IG
forces. Solving this equation for H2 molecule a fre-
quency called a “Fundamental Vibrational Fre-
quency” is obtained. Then looking at IR spectra of
diatomic molecules these frequency are identified
and the force constants are calculated for them.
The estimated in a such way frequencies for differ-
ent molecules are shown in Table 9.1. According
tot BSM interpretation, however, they correspond
to the equivalent fundamental frequencies of the
bonding systems of the shown molecules.

“Fundamental Vibrational Frequency” accor-      Table 9.1
ding to QM model of harmonic oscillator, co-
responding to equivalent proper frequency of
the bonding system according to BSM model                  
===========================================
Molecule          (cm-1)                Molecule          (cm-1)
----------------------------------------------------------------------
                                                       127I127I               213
                                                       16O16O               1556
H35Cl               2886                      14N14N               2331
H79Br              2559                       12C16O               2143
H127I               2230                       14N16O              1876
35Cl35Cl           556                        23Na23Na           158
79Br79Br           321                       39K35Cl               278
---------------------------------------------------------------------

 
The frequency position of H35Cl, for exam-

ple, is quite accurate, and appears in the middle be-
tween P and R branches of the vibrational-
rotational spectrum. The synthetic spectrum of
H35Cl, together with D37Cl is shown in Fig. 9.8.  

ν ν
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                               Fig. 9.8
           Spectra of H35Cl and D37Cl

The synthetic spectra show the position and
intensity of the lines without their linewidths. The
shown vibrational rotational spectrum of HCl, ac-
cording to QM model is known as spectrum corre-
sponding to the fundamental frequency of HCL
molecule, given in Table 9.1. The two branches P
and R are really centred around the value of 2886
cm-1. According to BSM model this is the equiva-
lent fundamental frequency of the HCl molecule.

The shown spectrum contains only P and R
branch. Later we will see, for which type of mole-
cules and bonding systems this type of spectrum is
a typical one. The P and R branches exhibit the fol-
lowing general features.

- The line frequency of the R branch are high-
er, than the P branch.

- The energy distribution of the lines in the
branches follows a nonlinear orders reference often
as progressions. They have different span coeffi-
cients for P and R branch. 

- R branch lines are more intensive, than P
branch lines

From the spectrum in Fig. 9.8 we see, that the
D37Cl set of lines is slightly shifted from the H35Cl
set in the direction of lower frequencies. The equiv-
alent molecular fundamental frequency should
have a frequency shift in the same direction accord-
ing to Eq. (9.1) if only M is changed, while kn is a
same. The kn parameter corresponds to the strength
of the bonding system. The strength of the bonding
system is determined by the connected pairs of va-
lence protons (or deuterons) and the subharmonic
number of the quantum orbit. It varies within a lim-
ited range for molecules of different atoms. In the
same time M may vary in larger range. This leads
to the following conclusion:

Molecules of heavier atoms will exhibit
lower equivalent molecular fundamental fre-
quency. 

The above made conclusion could be verified
by examining rotational spectra of different mole-
cules. 

9.5.3 Characteristic features of the molecular 
oscillations

Relying on the discussed so far considera-
tions we may provide some conclusions about the
characteristic features of the molecular oscilla-
tions. Their proof will be presented in the following
analysis, provided in this chapter.
• The Bonding electron system, possesses 

much higher equivalent fundamental fre-
quency, than the molecular one. Its motion, 
generally follows, the motion of the nuclei

•  The IG field of both nuclei will influence 
their vibrational motion and internuclear 
distance

• The bonding electron system, interacts 
strongly  with a CL space and weakly with 
other electrons of the atomic nuclei.

• The bonding electron system affects the 
smoothness of the vibrational motion, due to 
the stronger quantum interaction with CL 
space.

• The bonding electron system is sensitive to 
external factors, as photons, electrons, elec-
trical filed, magnetic field, and collision of 
the molecule with another molecule or atom. 
In result of such interactions, the fundamen-
tal molecular oscillation, may be perturbed.

• The perturbation of the molecular oscilla-
tions provides rich combinational conditions 
for transitions between different vibrational 
levels (including additional levels of orbit 
distortion, discussed later).

9.5.4 BSM concept of  oscillations for  molecules 
with EB type bonds
 Balance of forces and its diversity of oscillations

Let use the example of diatomic molecule
consisting of light atoms.

In the Balmer model we have seen, that the
electron motion is governed by the balance of the
three type of forces: IG forces, Internal Coulomb
forces and inertial forces. The Newtonian gravita-
tional force between the electron and proton was
neglected. The inertial mass expressed by the cen-
tripetal acceleration, is comparatively small, but
still plays a role in the force balance.
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9.5.4.1 Diversity of molecular oscillations and 
their categorization.

In the molecular model, the internuclear
distance is in the order of quantum orbit length. A
simple test shows, that the Newtonian gravitational
energy is much smaller than the bonding energy
and transition energies. Therefore, its contribution
could be ignored.

The problem with the inertial mass is differ-
ent. The inertial mass participates in the centrifugal
forces. For one and same molecule these forces are
dependent of the molecular velocity (due to the hel-
ical interaction with CL space). For different type
of molecules, these forces are dependent of the
mass distribution in the molecule and the rotational
symmetry. This two factors could be defined by the
moment of inertia around the axis, passing through
the centre of mass point. From this point of view,
the molecular oscillations could be divided into
two different types:

- I-st type oscillations - for molecules (or
fractions of molecules)  with low moment of in-
ertia

- II-nd type oscillations - for molecule (or
fractions of molecules) with higher moment of
inertia

It is clear, that the centrifugal forces will
obtain a definite value when the angular frequency
corresponds to the equivalent fundamental molec-
ular frequency given by Eq. (9.A.5). 

In §9.7.5.D it will be shown, that due to
the quantum quasishrink effect the change of
the internuclear distance estimated by the exter-
nal CL space length unit is negligible. 

The above statement provides one very im-
portant conclusion:
 (A). The radial component of the vibrating nu-
clei estimated in CL space unit length is negligi-
ble. Consequently the work for displacement of
the CL space node by the FOHSs of the both nu-
clei should be contributed only for the rotational
motion. In fact this is the inertial interaction of
the protons and neutrons with the CL space.

The conclusion (A) gives a possibility to es-
timate the rotational energy by a classical way.

where I - is the moment of inertia and 
is the angular rotational frequency

The moment of inertia for diatomic homo-
nuclear molecule is   

            (9.A.6)

The rotational frequency  could be esti-
mated by vibrational frequency  defined as an
equivalent fundamental frequency of the molecule.
For H2-ortho-I molecule it is shown in §9.9.2 (Ta-
ble 9.4) that the ratio between both frequencies is 

At such ratio the symmetry of the inertial
interactions with CL space is preserved for a com-
plete rotational cycle.  For other homonuclear dia-
tomic molecules such condition could be satisfied
only for even ratio between the both frequencies. 

The vibrational frequency, that in fact is the
molecular equivalent fundamental frequency,
could be estimated by the maximum of the enve-
lope of the “pure rotational” spectrum. The latter is
presented as set of lines whose distribution is given
by the QM equation:

      (9.A.7)

 - is a parti-
tion function

The plot of Eq. (9.A.6) for CO molecule
with constant  at T = 298 K is shown
in Fig. 9.9

                          Fig. 9.9
Distribution of population among the 
rotational states of CO at room temperature

The temperature affects the shape of the
curve by a horizontal span factor. The shape of the
population curve for different diatomic groups is
similar, but with different span coefficients. The
shape is also similar to the theoretically obtained
curve of the momentary velocity distribution of the
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oscillating CL space node, discussed in Chapter 2
§2.9.6.A. It is shown again in Fig. 9.9.A.

                       Fig. 9.9.A

The both curves have a shape close to Max-
wel distribution of the velocity. This velocity is de-
pendent of the molecular kinetic energy. Having in
mind the helicity of the atomic and molecular
structures it is evident that the rotational frequency
should be correlated with the equivalent molecular
fundamental frequency. Consequently the latter de-
pends of the absolute temperature of the gas sub-
stance.

The pure rotational spectrum is usually giv-
en in units of cm-1. So it is convenient to estimate
the vibrational and rotational frequency in a same
units. The rotational frequency is:

. 
Then the rotational energy of diatomic

homonuclear molecule in (eV) is

         (9.3)

where: mp - is the proton mass, A is the
atomic mass, rn - is the internuclear distance and

 is the rotational frequency in cm-1

In Eq. (9.3) mp is used instead of average
value between the proton and neutron mass, be-
cause the difference between them is quite small.

The rotational energy, calculated by Eq.
(9.3) should be compared to the bonding energy for
the equilibrium point of the vibration, that from its
side is defined by the IG field and the number of in-
volved valence protons and bonding electrons. For
the IG field it has to be kept in mind its different
participation between the protons (deuterons) in-
volved in the bond system (synchronized IG field)

and between nuclear systems (not synchronized IG
field). 

If  is much smaller than the bonding
energy at the equilibrium, the molecular oscilla-
tion is of I-st type, otherwise it is of II-nd type.

For the molecules with I-st type oscillations
the inertial moment is ignored. This simplifies the
analysis of some light molecules. For molecules
with II type oscillations, the inertial moment could
not be neglected. Some complex molecules may
have the both type of oscillations. Some light mol-
ecules, also may have large moment of inertia, be-
cause it is dependable not only of the Newtonian
mass, but the configuration of the bonding orbit as
well.

The BSM model of vibrational motion for
molecule of I-st type is different, than the Quantum
Mechanical model of harmonic oscillator and its
anharmonic corrections.

Type of spatial motion
We may distinguish the following spatial

type of motion:
- linear vibrations (along one axis)
- quasirotational vibrations
The linear vibrations are typical for mole-

cules with single valence bond. The H2 ortho states
serve as a typical examples. However, linear vibra-
tions may occur also for molecules with larger
number of connected valences but with symmetri-
cal positions of the atomic nuclei. 
• Molecules involved in linear vibrations pos-

ses only P and R branches in their optical 
spectrum

The quasirotational type of vibrations are
possible only for molecules, possessing more than
one bonding quantum orbit. The most simple ex-
ample of such motion is demonstrated by the Oxy-
gen diatomic molecule O2. The configuration of O2
molecule in one of its state is shown in Fig. 9.10. 

                        Fig. 9.10
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 O2 molecule in one of its states
 (2) - quantum orbit of second subharmonic
The Oxygen atoms, has been discussed in

Chapter 8 The external proton shell includes two
pairs of protons GBclp bonded in the equatorial re-
gion and two valence protons. Such configuration
provides a large freedom of the angular position of
the two valence protons and offer a possibility for
different states of the homonuclear oxygen mole-
cules. In any particular state, however, the angular
position is fixed by  a proper quantum orbit. The
quantum orbit in the state shown in the figure cor-
respond to the second subharmonic or energy level
of 3.4 eV.

From Fig. 9.10 we see that the points O and
O’ in the centre of the bonds are completely sym-
metrical in respect to the polar molecular axis. Let
consider a vibration as a rotational motion with
centre O with limited amplitude. Then the other
bond makes motion in a limited arc, that could be
approximated by a linear type of motion. For one
and same molecule, the centre of such motion can
be alternatively change between O and O’. Such
kind of osculations are like rotational motion with
limited amplitude and alternatively changed centre
of rotation. For this reason it is called a quasirota-
tional motion (vibration). It is evident, that such
type of motion is possible also between molecules
with three symmetrical bonds (N2 molecule for ex-
ample). Such type of motion is possible in many
complex molecules. One specific feature of this
motion is their signature in the optical spectrum.

Molecules involved in  quasirotational
vibrations possess Q branches together with P
and R branches in their optical spectra. 

Detailed discussion of the above statement
will be presented in §9.5.7.4.1.

9.5.4.2 Statistical cycle
In order to analyse the molecular oscilla-

tions, from the classical point of view, a concept of
statistical vibrational cycle containing large
number of vibration periods is used. It is called sta-
tistical, because one molecule, is barely able to
complete such whole cycle. Any absorption, exci-
tation, quenching or emission is able to distort se-
verely the statistical vibrational cycle. The
statistical cycle is  idealised, because:

- it does not show the simultaneous rota-
tional motion

- the emission and absorption processes are
ignored so the statistical cycle could be regarded as
amplitude modulated vibrational frequency

- it can be regarded as statistically averaged
from many molecules 

- the cycle is shown by the equivalent fun-
damental molecular frequency

- the vibrations of statistical cycles are per-
formed in conditions of IG field, i. e. non linear en-
vironments.

The shape of the statistical cycle is shown
in Fig. 9.11. In the same figure the analogical elec-
trical equivalent circuit is presented 

.

Fig. 9.11. Idealised statistical cycle 
   and equivalent circuit diagram

 In the left side of the diagram the trend of
different fields and energies are shown, denoted as:

EIG -  is an IG field potential
EIP - is an Ionization potential
EDIS - is a dissociation limit
E - is a momentary system energy
If referred to a single molecule the cycle  is

not realistic, because it could be distorted either
from absorption or emission of photons.

Note: In §9.7.5.D it will be shown, that the
internuclear distance estimated by the CL node
unit length is so small, that it is negligible even in
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comparison to the proton core thickness. What is
change is the quantum quasishrink space. But in
our analysis we may still consider some finite am-
plitude of vibrations, having in mind, that they
work against a tremendous IG forces.

There is one specific feature of the shown
oscillations: The amplitudes are asymmetrical. In a
first gland this may look confusing. However it is
possible due to the following features, some of
which has been already mentioned:

- the quantum quasishrink effect of E-field
inside the Bohr surface

- the quantum conditions of the bonding or-
bit

- the inverse cubic dependence of IG forces
from distance

The quantum quasishrink effect has been
discussed in the Balmer model. The case of molec-
ular bonding orbit, however is distinguishable by
the following:

(a) In the Balmer series the conditions of or-
bital length defined by the protons dimensions are
constant.

(b) in the molecular bonding orbit the condi-
tions of the orbital length are defined by the inter-
nuclear distance that is dependant of the total
energy balance

(c) the internuclear distance for the bonding
orbit is self adjustable, so we may accept initially
that the orbit will intercept the proton quasiplane in
the locus point (this will be later proven)  

As a result of the above mentioned distinc-
tions,  the quantum quasishrink effect at Balmer se-
ries could be identified as a static, while this in the
molecular bond, as a dynamic self adjustable qua-
si-change effect (for distance). The latter exhibit
different pumping capability.

In the equivalent circuit diagram, the prop-
er cycle is determined by the inductance L and ca-
pacitor C. The Diode D1, proper shunted with
resistor R2 causes the nonlinearity of the ampli-
tude. The resistor R causes the attenuation of the
oscillations. If a short pulse A is supplied in the in-
put an oscillating cycle, corresponding to phase t3
could be observed by the Oscilloscope O. 

The presented model of statistical cycle
contains three phases:

t1 - phase of absorption
t2 - radiation lifetime

t3 - phase of radiation
They are discussed in the next paragraph. 

9.5.4.3 Phases of the molecular oscillations
The phases, indicated as t1, t2, and t3, cover

the full normal cycle of the molecule, including the
absorption, radiation lifetime and emission. The
normal cycle excludes any possible perturbations,
mentioned in the previous paragraph. In analogy
with atoms, such cycle corresponds to optical
pumping and spontaneous emission of photons.

The phase t1 is an absorption phase, during
which the molecule absorbs photons, whose wave-
lengths match to the spectral features of the mole-
cule. In this process, mostly the electron system is
involved, because it has  much richer spectral fea-
tures, than the nuclear capability of photon absorp-
tion. The duration of the phase t1 is not a constant,
because the energy may be pumped by single line,
by few lines and by multiple spectral lines.

The phase t3 is an emission phase. The main
distinguished feature from the phase t1 is that its
time duration is strictly defined by the molecule
configuration, and appears as a constant. This is
valid for a case of spontaneous emission (but not
for a stimulated emission used in the lasers where
the lifetime is shortened). 

The phase denoted by t2 is a radiation lifetime
of the exited molecule. The duration of this phase
may depend not only of the pure vibrational motion
but also of the possibility the bonding electrons to
juggle some energy with other electrons in the at-
om. This automatically involves interaction be-
tween all electronic orbits and the distributed E-
field, controlled by the atomic local IG field.

 The rotational motion exists, but the system
appears fixed to a some proper vibrational level.
The duration of this phase is very dependable of the
Z number of the bonded atoms and molecular con-
figuration. In case of H2 molecule it might be in-
trinsically short. For molecules comprised of atoms
with larger number of electrons the juggling energy
capability increases significantly and so the radia-
tion lifetime. In some particular cases, like 
in the night Earth atmosphere above 80 km, the ra-
diation lifetime is about 58 min.

The lack of radiation during the phase t2
could be explained by the the capability of the IG

O2 a1∆g( )
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forces to modulate the proximity electrical field
around the protons involved in the electronic bond.
Additionally the bonding electron system may in-
teract with the underlying electron shells, around
the GBclp, that posses highly spatial oriented orbits
in a strong IG field. Having in mind the orbit tilt,
the QM spin, and the electron spin momentum of
the whole complex, it is possible a temporally sta-
ble energy to circulate in a form of running waves
in the internal volume of the atoms. All these con-
siderations may provide stable conditions for vi-
bration in the time interval t2 without loss of
energy.

9.5.5. Molecules with I-st type oscillations

9.5.5.1. H2 ortho-I state as a simplest diatomic 
molecule

For initial proof of the presented concept of
vibrational oscillation of diatomic molecule, we
will analyse the simple H2 molecule - ortho state.
The configuration of this molecule with bonding
quantum orbit of first harmonic is, illustrated in
Fig. 9.12 

                           Fig. 9.12
Vibrational scheme of H2 - ortho-I state

The quantum orbit quasiplane plane does
not coincide with the quasiplanes of the protons. It
passes through the locuses of the proton clubs. The
following notations are used:

Lp  - is a proton length
Lq(1) - is a long side of first harmonic quantum
           orbit
rn - is the distance between the Hydrogen atoms
ro - is the distance at equilibrium
r - distance between the electron and the proton
     core in the circular section of the orbit

Now let add one real feature to the vibra-
tional motion of I-st type oscillations: the quantum
levels. The quantum levels are caused by the finite
dimensions, that the bonding quantum orbit could

occupy in the space of integrated Bohr surfaces. It
is more convenient to express the quantum levels
by the energy instead of internuclear distance. In
this case the energy levels inside the Bohr surface
could be regarded as an energy levels in external
CL space. Such equivalence of the energy has been
found in the Balmer model, (Chapter 7). 

Fig. 9.13 shows the vibrational intervals of
the H2 molecule as a typical vibrational curve of
diatomic molecule according to QM model. In the
right part of the figure the Photoelectron (PE) spec-
trum of this molecules is shown. Its reflection by
straight line at angle  larger than 45o means that the
space intervals of the PE spectrum are proportional
to the vibrational levels but stretched. This spec-
trum, discussed later in 9.6.1 is shown in Fig. 9.19.
This stretched PE spectrum is likely caused by the
lost energy for recoiling of the atomic nuclei during
ionization. The largest peak of the PE spectrum
corresponds to the largely populated vibrational
level.

                         Fig. 9.13
     Quantum levels of H2 ortho-I state as a

liner diatomic molecule and its Photoelectron spec-
trum.

The parameters shown in Fig. 9.13 are: EB
- binding energy (known also as ionization energy),
Edis - dissociation  energy level, rn - internuclear
distance, Ek - electron spectrum (expressing the  PE
spectrum); levels 0, 1, 2 - vibrational levels with in-
tervals 1/2, 3/2, 5/2 ...)

The QM vibrational curve is drawn in coor-
dinates of energy level towards radius vector r of
anharmonic oscillator. This option is not suitable
for BSM analysis, in which the mentioned effect of
quantum quasi-scale change exists. In order to find
the signature of this effect it is more convenient to
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express the energy levels, shown in Fig. 9.13 as a
direct function of the quantum number of the level.
The shape of the obtained vibrational curve is
shown in Fig. 9.13A.

Fig. 9.13A Vibrational levels in function of
vibrational quantum numbers

We may call the shape of the curve shown
in Fig. 9.13A - vibrational ladder. The E parameter
referenced to the bonding (ionization energy EB in
the further analysis can be regarded as a momen-
tary energy of the system. We see that this energy
directly connected to the  vibrational levels is
quantized. The quantum levels are shown by hori-
zontal blue lines. The steps of the vibrational lad-
der, correspond to different quantum orbits,
obtained as a result of the quantum quasispace
change effect. Referenced to the equilibrium point
of level 0 this affect appears as quasishrink for the
right side from level 0. While in the Balmer model
this effect is a quasishrink and referenced to a fixed
distance (because the proton core dimensions de-
fining the quantum orbit is fixed), for the electron
bonding orbit this distance is defined by the inter-
nuclear distance between the two atomic nuclei.
The latter parameter in this case is self adjustable
from the total energy balance of the system in
which the IG field plays a very important role.

Summary:
• The BSM model and QM model, both pro-

vide the same type of vibrational level transi-
tions, but BSM model shows the real 
physical process in which the IG field and its 
enormous energy become apparent.

9.5.6 Approximate calculation of the system 
energy in the equilibrium state 

Let calculate the system energy for H2 or-
tho-I state. For this purpose we will take into ac-
count the following logical considerations:

The orbiting electrons between two protons
are able to neutralize their charges. We may as-
sume that every orbiting electron is able to neutral-
ize one charge, by interconnecting its E-filed lines
to the proton E-field inside the Bohr surface. Let
considering the moment, when one of the electrons
is in the locus of the left proton and the other one in
the locus of the right proton. Their velocity in this
case are normal to the direction of the vibration and
does not contribute to the momentum energy of the
system. This energy, then can be estimated, by con-
sidering two unit charges at distance rn. Now let as-
sume, that the left proton and the right electron are
both missing. The system energy in this case is

  [eV]. The same results is for the other
symmetrical case. Adding the two symmetrical
cases we should get the full system energy.

           (9.4)

The obtained value matches very well to the
parameter Vertical Ionization Potential, used in the
QM model  and determined by the Photoelectron
spectrum (discussed later and shown in Fig. 9.19).

                                   (9.5)
The parameter EVIP corresponds to the

largest peak of the PE spectrum, so it is easily iden-
tifiable. It is a signature of the most populated vi-
brational energy level. Consequently, we may
consider this energy to be equal to the system ener-
gy, calculated by Eq. (9.4) From the data about mo-
lecular orbital constants for H2 we also have a
value of average kinetic energy equal to 15.98 eV.
(http://physics.nist.gov/cgi-bin/Ionization/ta-
ble.pl?ionization=h2). All this gives us a confi-
dence for using of the theoretical Eq. (9.4) in the
further analysis.

 Consequently, for practical purposes we
may accept, that

                                                (9.6)

q/4πεorn

ESYS
2q

4πε0 Lq 1 ) 0.6455Lp+( )[ ]
--------------------------------------------------------------- 16.06 eV= =

EVIP 15.967  eV=

ESYS EVIP≈
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9.5.7 Experimental evidence about the BSM 
concept of molecular vibrations

9.5.7.1 Cross analysis 
 The presented concept of molecular vibra-

tions in CL space can be proved by analysis of  two
phenomena of simple diatomic molecule: the mo-
lecular spectra and the photoelectron spectra.

Number of methods for obtaining of Photo-
electron spectra exist. For our purpose, the most in-
formative method is the He I photoelectron
spectroscopy. In this method, the photoelectron
spectrum is obtained, when molecules of the inves-
tigated gas in vacuum conditions are irradiated by
He I resonance line at 584 A, possessing an energy
of 21.23 eV. The bound electrons are usually with
energy below 20 eV and the photoionization pro-
vides free photoelectrons. Their kinetic energy is
measured by electron energy analyser. The energy
spectra is the rate of detected electrons in function
of their kinetic energy.

9.5.7.2 Difference between the ionization mech-
anism for atoms, and molecules 

The photoelectron (PE) spectrum is informa-
tive for the internuclear bonds and vibrational lev-
els of molecules. If neglecting the motion of the
atom of the molecule (referencing to laboratory
frame) the energy balance equation is:

                                            (9.7)
where: EK is the kinetic energy of the bound

electron;  - is the photon energy of the ionization
source; EIP - is an “Ionization Potential” or “Ioni-
zation Energy”, term adopted due to the QM mod-
el.

If applying a photoelectron spectrum for at-
oms Eq. (9.7) is valid for the whole range of ob-
tained PE spectra. This equation, however, could
not be applied directly for a photoelectron spec-
trum in molecules because of the following differ-
ences:

- All the quantum orbits in the atom are con-
fined to the fixed distance, defined by the proton
dimensions, estimated in absolute scale.

- The quantum orbits of the molecular bond-
ing electrons are confined to distance that is de-
pendent of the self adjustable internuclear distance.

The above differences affect especially the
estimated energy of the bound electron by the
measured kinetic energy of the photoelectron.

According to PE theory for molecules, the en-
ergy balance is given by Eq. (9.8).

                      (9.8)
where: EK  is the measured energy of the pho-

toelectron. 
The terms in the bracket, denoted as vibra-

tional and rotational energy, provides correction
for EK in order to reflect the internal energy of this
electron. In BSM interpretation of PE spectrum this
correction is referred to the IG field between the
atomic nuclei and the electronic bonds.

Important feature of the PH spectra is that the
range of the energy bands is shrunk. This is appar-
ent from the analysis of H2 molecule (provided lat-
er) when comparing with the corresponding optical
ban of same vibrational levels. The reason for such
effect is the energy loss of extracted photoelectron.
Losing a electron the molecule becomes a positive
ion. The interaction between this ion and the nega-
tive electron causes a partial loss of its energy for
recoiling of the ion.

9.5.7.3 Signature of the vibrational bands in the 
Optical and Photoelectron spectrum

EVIP is easily identified by the PE spectrum
of the simple molecule like H2 ortho-I. Even the
corresponding vibrational bands, could be identi-
fied from the optical spectrum, and the feature of
EVIP parameter as well. (This will be shown later in
Fig. 9.19). But while, the energy range of the PE
spectrum is shrunk, the energy range for the optical
spectrum is not.

The relation between the vibrational levels of
H2 ortho-I and the optical and PE spectrum is illus-
trated in Fig. 9.15. The following notations are
used:

E - is a momentary energy scale 
ESYS - system energy
EIP is a ionization potential (known also as

binding energy)
rn - is an internuclear distance at equilibrium

point
 - is the range of change of  rneare the rang-

es of displacement

EK hν EIP–=

hν

EK hν EIP– ∆Evib ∆Rrot–( )–=

∆rn
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                            Fig. 9.15
          Vibrational levels of H2 ortho-I and their
     relations to the optical and photoelectron spectra

EDIS - is known as a dissociation energy (al-
though it may not lead to dissociation of transitions
are between the energy levels and the metastable
state see J. H. Black and A. Dalgarno, 1976)

EA and EB energies defining the position of
the metastable state).

EK - is a PE spectrum parameter (“electron
kinetic energy”)

1,2 3 - vibrational bands
The vibrational curve is shown as function of

vibrational quantum numbers. They are referenced
to the change of internuclear distance rn. It will be
shown later that the range of this change is intrinsi-
cally small due to the strong contribution of the IG
field.

The vibrational curve is idealized in the range
of the dissociation limit but in the following later
analysis we will use vibrational levels with small
number.

The optical vibrational bands shown in the
left side corresponds to transitions between the vi-
brational levels and the metastable state. The PE
spectrum is shown below the vibrational ladder.
The PE levels are reflected by a line with angle

larger than 45 deg (multiplication factor < 1) in or-
der to show the stretched PE levels in respect to
those of optical spectrum.

From the Fig. 9.15, the functional relation be-
tween the Optical and PE spectrum becomes appar-
ent. One and a same shape of the quantum
vibrational curve defines two different shapes of
the Optical and PE spectrum. Working only by the
energy levels, we see that, if applying a proper off-
set and multiplication factor to the PE spectrum, we
will obtains the optical spectrum and vice versa.
Consequently, the inverse task - obtaining the vi-
brational levels from the Optical and PE spectrum
is also possible. In the same time we may get the re-
lation between the vibrational levels and the mo-
mentary internuclear distance. This is done in the
following later paragraphs.

The BSM analysis suggests one reasonable
explanation of the metastable state of H2. The
quantum orbits for this state may have exactly the
same trace length and shape as Lq(1) but it can be
formed of the trace length of two quantum loops of
second subharmonics connected in serial. Then the
distance between the two protons, if not consider-
ing  any deformation of the orbital shape is un-
changed. Keeping in mind that the IG field is able
to control the spatial configuration of the proximity
electrical field we may attribute this to a common
synchronization of the IG energy of the two pro-
tons and the two electrons. Such effect, however,
may work up to a limited distance between the pro-
tons. In this range Eq. [(9.18)] is valid. The IG field
may be propagated beyond this distance (up to
some limit) but the two protons fields are not any
more commonly synchronized.

Summary:
• The Vibrational oscillation of homonuclear 

diatomic molecule exhibit unique Optical 
and PE spectrum.

• The vibrational quantum motion could be 
analysed by using a proper set of the vibra-
tional transitions and the corresponding PE 
spectrum. 

• The PE spectrum exhibit different energy 
offset and energy scale factor.
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9.5.7.4 Fine structure of the optical molecular 
spectra

9.5.7.4.1 Effect of the variation of bonding 
length and tilt on the quantum orbits.

The electron system of the atoms follows the
nuclear motion, but they are not rigidly connected
to the nuclei. They have also different resonance
frequencies. The contributors for this difference are
not only the inertial factors but the different mag-
netic moments as well (different magnetic moment
of electron in comparison to the proton and neu-
tron). The bonding electrons, possessing own spin
momentum and QM spin (orbital momentum), in-
teract with the nuclear atomic electrons, via mag-
netic interactions inside the integrated Bohr
surface. We may consider, that the bonding elec-
trons are elastically connected to the nuclei. In re-
sult of such connection, the following effects might
be possible:

(a) the quantum orbit shape is unchanged but
could not follow exactly the vibrational motion

(b)  the quantum orbit size is unchanged, but
the shape is distorted

(c) the quantum orbit size and shape are the
same but phase delay occurs between the dynami-
cal quantum quasishrink effect and the phases of
the two electron proper frequencies (electron shell-
positron) and (positron- core.

 According to the definition of the quantum
loop, it is the orbital trace length that defines the
quantum orbit. The shape of the orbit could be
modified, without disturbing this condition. The
shape is defined by the E-field configuration and
the classical electron spin momentum. The change
of the shape, however affects the strength of the
quantum effect and efficiency of the CL space
pumping. The strength is maximum, when the spin-
ning electron intercept the magnetic lines of the
proton at angle close to 90 deg.

In later analysis (not shown) it has been found
that a quantum orbit with shape of Hippoped curve
and parameter  matches very well to the ex-
perimental data. Therefore, We may consider,
that, the quantum orbit is free of distortion at
parameter 

 The possible distortions of the bonding orbit
are two:

- symmetrical distortion
- asymmetrical distortion
The both types of distortion are shown re-

spectively  in Fig. 9.16, a. and b.

                           Fig. 9.16
  Shape distortions of the  bonding quantum

orbit, a. - symmetrical,  b. - asymmetrical 

The case of symmetrical distortions is valid
when the bonding length is changed but the long
proton axes are aligned. The asymmetrical distor-
tion appears, when the bonding length is a same but
the proton axes get tilting.

The bonding orbits of the molecules with lin-
ear type of vibrations exhibit symmetrical type of
distortion. Such type of distortion is valid also for
the bonding orbits of the quasirotational vibration
that exhibit quasilinear motion in arc.

The symmetrical orbit distortion may cause a
small change of the internuclear distance that could
provide some displacement from the defined vibra-
tional level. The asymmetrical effect for displace-
ment from the vibrational level, however is much
smaller.

9.5.7.4.2 Oscillations providing vibrational-
rotational spectra with P and R branches only

The equivalent proper frequency of the bond-
ing system is higher, than the equivalent proper fre-
quency of the molecule. So it is the first one that
could put its signature in the vibrational cycle. It
appears as a set of proper frequencies providing
own levels above or below the given level of the vi-
brational ladder. The symmetrical distortion of the
bonding orbit allow appearance of this levels as P
and R branch.

Now one basic question may arise:

a 3=

a 3=
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Why the frequency set appears above and be-
low the vibrational level and with a spacing asym-
metry?

For light diatomic molecules, the rotational
energy is much smaller, than the bonding energy at
equilibrium. Then the inertial interaction of the nu-
clei could be neglected in the vibrational motion,
considering an energy balance only of the quantum
quasishrink effect. Such energy balance is between
IG(CP) and IG(TP) of CL space (Chapter 2) dis-
cussed later in §9.7.5.B, C. The motion of the
bonding system is subjected to this balance. The
change of IG(TP) defines the proton electrical field
inside the Bohr surface, while IG(CP) - the charge
unity. It is reasonable to expect, that the motion of
the bonding system could not follow exactly the
phase of the IG field oscillations. Some phase dif-
ference could be be expected. The assumption of a
phase difference comes from the fact, that the elec-
tron has a finite inertial mass and axial spin mo-
mentum. The obtained phase difference may cause
overshooting of the vibrational motion of the bond-
ing system in respect to the vibrational level de-
fined by the IG field oscillation. In result of all
these considerations, the vibrational motion of the
bonding system provides a set of quantum levels,
around the vibrational level.

The formation of R and P branches from the
frequency set of the bonding system is illustrated
later by the analysis of H2 and D2 molecules. They
both could be considered as basic units involved in
any EB bonding system in the molecules.   

The process of P and R branches formation is
illustrated by Fig. 9.17, where a section of vibra-
tional curve is shown with three consecutive vibra-
tional levels.

The provided concept of overshooting with
the shown phase is in agreement with the analysis
of P and R branch formation for H2 and D2 mole-
cules (ortho-I state) given later in this chapter in
§9.9.3. The correctness of accepted sign of the
phase delay might be a topic of discussion. Howev-
er it is possible to be verified by study of P and R
branches for some linear diatomic homonuclear
molecules for which enough optical and PE spectra
exist.

.

                       Fig. 9.17
Section of three consecutive levels of the vibrational
 ladder with fine structure levels from the bonding 
system frequency set. In the right side the corres-
ponding optical spectrum from transition between 
these levels and the lowest level is shown

The practical realization of the overshooting
process is possible due to the symmetrical distor-
tion of the bonding orbit. We may reference the ob-
tained set of levels as  “orbit distortion levels” in
order to preserve the clearness of the physical con-
cept. They corresponds to the J levels of the QM
model. For the  BSM model the J numbering does
not need to start from 0 and from 1 for R and P
branches respectively.

In the QM model these levels are considered
rotational, due to the accepted initial theoretical
concept  of “rigid rotor” and they are denoted by J
levels.

We will continue to use J notation for the or-
bital distortion levels. They are directly related to
the spectral lines contained in the P and R branches
of the molecular spectra. 

From the BSM model, the following rules
could be formulated:

(1) When the transition is between one vibra-
tional level and the lowest (zero) level, the photon
energy of the lines is equal to the difference be-
tween the instant system energy and the optical
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boundary energy (see §9.5.7.4 and Fig 9.15). The
PE spectrum has a shape corresponding to a set of
such type of transitions.

(2) The line strength corresponds to the pop-
ulated degree of the vibrational level 

(3) There is no line in the middle between P
and R branches because, the probability of exact
matching the proper frequency set of the bonding
system with the vibrational level determined by IG
field balance is quite low.

(4) When estimated by external CL space
units, R branch corresponds to a symmetrical
stretching of the quantum orbit, while P branch to
a symmetrical shrinking (assuming the parameter

 is preserved). R branch is from the side of
larger internuclear distance, while P branch is from
the shorter one. Their different line spacing is a re-
sult of the IG field balance (Note: This considera-
tion needs to be additionally verified).

(5) Both P and R branches have nonlinear line
spacing counted from lower to higher J numbers.
This non linearity is a result of two nonlinear fac-
tors: IG field and the reaction of the bonding elec-
tron to the orbital distortion.

(6) The P and R branches in the molecule of
heavier atoms should be less spread around the
middle point of equivalent transitions

(7) For one and a same molecule the P and R
branches, estimated by energy levels, are more
compact for   transitions, than  tran-
sitions

(8) The optical signature does not show line
shape deterioration due to a level jittering, despite
the fact that the electron system is elastically con-
nected to the nuclear hadron  structure. This may
lead to two conclusions: 

-The vibrational motion is quite small, while
the energy is juggled by the quantum quasishrink
effect

-The IG field balance leading to a photon
emission (absorption) is a quite fast process.

Some of the first J numbers due to the orbit
distortion are even apparent in some PE spectra
with high resolution. The PE spectrum observed by
J. E. Pollard et al., J. Chem. Phys, 77, 34-45, (1982)
and given in Fig. 9.19, shows signature of low J
numbers.

From the way the PE spectra is usually ob-
tained it is clear, that the first PE peak is accumu-

lated by electrons from vibrational bands
possessing  a lower number (see  Fig. 9.15). If the
band 1 only is scanned with high resolution, then
the obtained PE spectrum will carry the signature
of the orbit distortion levels, corresponding to J
levels of the optical spectrum. Such experiments is
performed by G. K. Cook and M. Ogawa (1965).
They obtain absorption spectrum of N2 in the far
UV range. Their method is different than the meth-
od which uses He resonance line. They scan a mon-
ochromatic line, observing simultaneously the
optical spectrum and the ionization current. In such
approach the photoelectron energy range shrink ef-
fect  does not exists. The obtained PE spectrum is
shown in Fig. 9.18.

                                  Fig. 9.18
     Photoionization yield-curve and absorption spectrum
  for N2 gas (courtesy of G. K. Cook and M. Ogawa (1965).

9.5.7.4.3 Oscillations providing vibrational-
rotational spectra with  P, R and Q branches

The concept of the quasirotational motion has
been discussed in §9.5.4.2. A specific feature of
this motion is that one electrical bond serves as a
centre of the motion, while the other vibrates by
stretching and shrinking, and they interchange al-
ternatively. The quantum orbit of the bond with vi-
brational motion exhibits symmetrical orbit
distortions. So this motion contributes to P and R
branches, as described in the previous paragraph.

a 3=

νi νi 1+–( ) νi 0–( )
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The quantum orbit of the other bond, that is a centre
of such motion exhibit asymmetrical distortion,
due to change of the angle between the bound pro-
tons. The change of the angle causes some change
of the spatial configurational of the E-field around
the clubs of the bound protons. This causes a dis-
tortion of the Hippoped shape of the quantum orbit.
In a first approximation we may consider, that the
distance between the pair bonds serving as a centre
of rotation and the nuclei is not changed. This ap-
proximation is more valid for molecule from heav-
ier atoms. This means that, the IG field in this point
is a same. Then the pumped CL space by the
electron of the bond serving as a point of qua-
sirotation will have an energy staying in the
middle of the P and R branches that are contrib-
uted by the other bond.  Consequently this type of
oscillations contributes to the Q branch of the opti-
cal spectrum. The asymmetrical distortion in fact
may displace slightly the orbital position from the
equilibrium, corresponding to P R branches. So the
Q branch contains more than one line, additionally
spread in small spectral range. The heavier diatom-
ic molecules with pair bonds exhibit smaller spread
of the Q branch, in comparison to the lighter mole-
cules (for example H2 para molecule). This indi-
cates that the Q branch line spacing is sensitive to
the displacement from the equilibrium distance. In
heavier molecules, the bonding electrons interact
with larger number of atomic electrons from the in-
ternal shells. The latter are much more stronger
connected to the protons, providing in such way
more stable reference point. For this reason the Q
branches of the heavier molecules are less spread. 

In many molecules the Q branches appear as
more than one set. This is a result of the QM spin
orbit interaction between the bonding and other
electrons of the atom.

Summary:
• Molecules with linear vibrations exhibit 

“vibrational-rotational” spectrum with P 
and R branches only

• Molecules with  quasirotational vibrations 
vibrations exhibit spectrum with P, R and Q  
branches.

• The P and R branches of the molecules with 
quasirotational vibration are from the quasi-
linear vibrating bond, while the Q branches 

are from the bond, that is a centre of the 
quasirotational motion.

9.5.8 A possible mechanism of the Ramman 
scattering and rotational Ramman spectra 
according to BSM

Ramman spectra are features only of mole-
cules. The atoms can not posses such kind of spec-
tra. Ramman spectra are obtained when the
molecule is exited by strong monochromatic radia-
tion. Such excitation in the optical range is very ef-
ficient when the radiation energy is from a laser. 

Now let see what happens when the mole-
cule is irradiated by strong monochromatic radia-
tion. We have seen that the molecular system is
very sensitive to a change of the momentary energy
balance. The strong  monochromatic radiation (ad-
ditionally coherent for irradiation by laser) inputs
some amount of  energy into the volume of the
Bohr surface.  The obtained energy disturbs the en-
ergy momentary balance of the system, so the sys-
tem undergoes fast transition from one internuclear
distance to another. This corresponds to transition
from one vibrational level to another directly with-
out following the vibrational curve. So the system
jump to another energy level, but the input energy
usually is different than the obtained energy be-
tween the levels. So the excess energy is released
right away as photon. The matched level may be
not only vibrational but also some “vibrational - ro-
tational” level. The process is so fast, that it seems
as a scattering. It does not require a finite CL
pumping time as in the spontaneous emission.

 The Ramman scattering may be referenced
not only to the vibrational and vibrational-rotation-
al levels, but also to the quantum levels of the elec-
trons in the nuclei. When the irradiating energy is
proper selected and the molecules are in the ground
state (lowest vibrational energy) a “rotational”
Ramman spectra could be obtained.

“Rotational” Ramman spectra
The “pure rotational” spectrum is a signa-

ture of the proper frequency set. The energy differ-
ence between the bottom level and its neighbour is
larger than between neighbouring levels with high-
er vibrational number. The line spacing for this vi-
brational level resulted from a quantum shape
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change  is also large. Therefore, when the molecule
possesses a lowest vibrational energy some signa-
ture of pure rotational spectrum might be well sep-
arated at the ) vibrational level. Such experiments
are provided.
Ramman scattering

Now let suppose, that molecule in lowest
vibrational state are irradiated by proper quantum
energy in order to reach some higher vibrational
level pretty accurately. Then the small energy with
a proper frequency signature will be translated to
higher vibrational level. If the irradiated quantum
energy is proper selected the condition for photon
energy difference will appear exactly in the vibra-
tional level between   P and R branches. So by scan-
ning the irradiation photon energy the levels are
possible for resolving. 

In fact the  condition for photon energy dif-
ference are fulfilled for two symmetrical levels
from both sides of the vibrational curve. Their en-
ergy is one and a same, but the internuclear  dis-
tances are different. It is evident, that the emitted
spectral lines will have  the same signature as the
“pure rotational” spectrum, partly modified from
the different internuclear distance. The Stoks com-
ponent corresponds to the longer distance and An-
tistoks - to the shorter one.

The “vibrational-rotational” spectrum is a
signature of the proper frequency set of the bond-
ing system. The “rotational” Ramman spectrum is
a signature of the molecular proper frequencies set.
The fact that they are quite distinct leads to a con-
clusion that:
• The molecular and the bonding system 

equivalent fundamental frequencies are dif-
ferent.

The Ramman effect is characterized with one
specific feature: the photons are emitted right away
after the activation (no apparent lifetime of activat-
ed state as in the atomic and molecular spectra).
For this reason the Ramman effect is known as a
Ramman scattering. The BSM concept is in full
agreement with this feature. Its explanation is dis-
cussed later in §9.7.5-D.

9.6 Vibrational bands of H2 ortho-I state.

9.6.1 Photoelectron spectrum
The H2 ortho molecule exhibits a typical mo-

lecular oscillations of I-st type. This is evident from
the shape of its PE spectrum

                       Fig. 9.19
 PE spectrum of H2 molecule (courtesy of J. E. Pollard
et al. (1982)

The spectrum is obtained by using a He I res-
onance line (21.23 eV). The energy scale is refer-
enced to Ek.

  From the PE spectrum in Fig. 9.19 we see,
that the largest peak is at 5.26 eV. So
  , and according to Eq.
(9.9), this is also ESYS at point B (see Fig. 9.15).

9.6.2 Identification of the vibrational levels by 
the Optical spectrum

The optical spectrum for the same state, cor-
responds to the system , known also as
a Lyman system. The optical bands of this system
have only P and R branches, but not Q branches.
This is in agreement with the considerations dis-
cussed in §9.5.7.4. Good experimental measure-
ments of this system are provided by I. Dabrowsky
(1984). Using these data, we may identify the opti-
cal transitions between the vibrational levels, by
using the following criteria:

- The photon energy and line abundance
should follow the similar trend as the vector, ob-
tained by the PE spectrum

 - The third optical band should be the most
populated one

There are two sets of strongly populated opti-
cal bands, whose levels and trends are very close.
The first one is from transitions: (0-1), (0-2), (0-3)
and so on, denoted by BSM as (0-v) set. The second

EVIP 21.23 5.26– 15.97  eV.= =

B 1Σu
+ X1Σg

+–( )
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one is from transitions: (1-1), (1-2), (1-3) and so
on, denoted by BSM as (1-v) set.  In both sets, the
third consecutive optical bands are the most popu-
lated and their population corresponds to the  PE
energy level trend. We accept, that the difference
between  the both sets corresponds to the Quantum
Mechanical electron spin (in BSM model two elec-
trons circulate in opposite directions, while the pro-
ton twisting serves as a reference). The signatures
of the two optical sets appear also in the PE spec-
trum shown in Fig. 91.17. If comparing the energy
difference between the two set with the energy dif-
ference of the fine line splitting in atomic Hydro-
gen, it looks larger. But we do not have to forget the
shift effect involving directly the IG energy, that
may contribute to the larger energy separation be-
tween the two sets of optical bands and PE peaks.
From the cross validation between the energy level
trends of both type of spectra we conclude, that the
PE spectrum of Fig. 9.16 corresponds to both sets.

9.6.3 Identification of the common nonlinear 
trend between the Optical set and PE spectrum, 
and estimation of E1 parameter.

Firstly we will accept, that the shape of opti-
cal set and the PE spectrum are both part of parab-
olas, but with different coefficients. This
assumption will be confirmed later. Then we may
apply the rule, that the difference between two par-
abolic functions is also a parabola. Using the level
number as an argument (according to BSM num-
bering), we may identify the common trends of the
energy levels by the following procedure. 

- digitizing the PE spectrum of Fig. 9.19 into a
vector EPE (EPE instead of EK is used in order to
avoid a possible confusion in a later analysis)

- form a vector of (0-v) set, denoted as E0.
- form a vector of (1-v) set, denoted as E1.
- make a vector difference  and

- fit to a simple nonlinear equation (first try a sec-
ond order polynomial)

- plot the curves
- find the interception point between EPE and (E0

- EPE) and (E1 - EPE).

From the fine structure model presented in
§9.5.7.4. it follows, that the most accurate quantum

energy value of the vibrational bands should be in
the middle between the first J lines of the P and R
branches. 

   H2 ortho-I vibrational quantum levels
  identified by (0-v) set and PE spectrum      Table 9.2   

===========================================
Vib.      transition   Ist R line   Ist P line     E0      EPE   
level        by QM        (eV)         (eV)         (eV)    (eV)    (eV)
-----------------------------------------------------------------------
0                (0-1)       10.76         10.65     10.66     5.79    4.87
1                (0-2)       10.186       10.168    10.177   5.52    4.65
2                (0-3)       9. 728         9.71       9.719    5.27    4.45
3                (0-4)       9.298          9.281     9.289    5.025  4.264
4                (0-5)       8.896          8.88       8.888    4.8      4.088
5                (0-6)       8.522          8.507     8.5145   4.58   3.934
6                (0-7)       8.177          8.163     8.17      4.38   3.79
7                (0-8)       7.8626        7.8482    7.855    4.2     3.655
----------------------------------------------------------------------

 Table 9.2 provides data for (0-v) set  with re-
lated parameters EPE and (E0 - EPE) vectors and
Table 9.3 - for (1-v) with the similar related param-
eters.

 H2 ortho-I vibrational quantum levels
  identified by (1-v) set and PE spectrum      Table 9.3   

===========================================
Vib.     transition   Ist R line   Ist P line     E1      EPE   
level     by QM        (eV)         (eV)          (eV)    (eV)    (eV)
-------------------------------------------------------------------------
1             (1-1)        10.873       10.817    10.826   5.79     5.036
2             (1-2)        10.35         10.33      10.34     5.52     4.82
3             (1-3)        9. 891        9.8739    9.882    5.27      4.612
4             (1-4)        9.461         9.444      9.4525   5.025   4.4275
5             (1-5)        9.057         9.043      9.05       4.8       4.25
6             (1-6)        8.685         8.67        8.677     4.58     4.097
7             (1-7)        8.34           8.326      8.333     4.38     3.953
8             (1-8)       8.0252        8.0117    8.0184    4.2       3.8184
9             (1-9)       7.7409        7.7282    7.7345   4.0375  3.697
10          (1-10)      7.4896       7.4778     7.4834    3.88     3.603
------------------------------------------------------------------------

From the Tables 9.2 and 9.3, vectors of E0,
  and E1,   in function of band levels are

formed, and fitted to a polynomial of second  order
.  The vector EPE is also fitted to a

same polynomial. The chosen polynomial fits quite
well for all vectors with std  in order of 0.0038. The
fitting coefficients are respectively:
for E0:    a=11.174884     b=-0.52778274   c= 0.01408631
for :   a=5.1015982     b=-0.2386875     c=0.007276785
for E1: 
for :
for EPE:  a=6.0749265     b=-0.29214977   c=0.0072671569

 Fig. 9.21 shows the plot of E0, EPE and 
in function of the vibrational level. The extrapolat-

∆E0 E0 EPE–=
∆E1 E1 EPE–=

∆E0

∆E1

∆E0 ∆E1

y a bx cx2+ +=

∆E0

∆E1

∆E0
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ed curve regions are marked by dashed lines (Note:
the curves may not look smooth due to drawing and
printing capabilities). 

                           Fig. 9.21
   Vibrational levels by the optical band set (0-v) 
   and PE spectrum for H2 ortho-I. The solid line shows
   the observed data, the dashed lines show the extra-
   polated data from the optical spectrum

 From interpolated curves one finds that  EPE
and  intercepts at 18.147. The first derivative of
all three plots at this point are close to zero. At the
PE spectrum, the band (level) number 18 (by BSM
numbering) appears still distinguishable by ampli-
tude and energy difference. If E0 and EPE were not
correlated properly, the interception of E0 and  
would not coincide at band 18. So we accept the
band 18 as the last one before the boundary limit
convergence. For this band from the fitted curve for
E0 we obtain the experimental value of EB.

                                                (9.9)

 - shrunk value of EB estimated by
PE spectrum

Therefore we may accept the last band to be
18 (this will be confirmed later) and denote it as .

                                                 (9.10)
The parameter EB determined by this ap-

proach is approximate. But it helps to identify one
real physical parameter and to find its relation the
energy levels shown in Fig. 9.15.

9.7. Theoretical analysis of H2 ortho-I molecule 
oscillations

9.7.1 Estimation of rotational energy
The analysis of the H2 otho-I properties will

help to understand the electronic bondings in the
molecules. For this reason we will investigate the

momentary system energy of H2. Firstly we will
check what type is the molecular oscillation, by
comparing Erot and E1 energy. Using the value of
rotational constant, provided by Dieke and Blue
(1935) and Dieke, (1958):   and ap-
plying Eq. (9.A.6) we see that the maximum of the
population curve appears for J=2 at temperature
77K and between 2 and 3 , but closer to 2 for 298K.
Accepting J=2, corresponding to an equivalent mo-
lecular frequency of 54.6 cm-1 we may use it for
estimation of the rotational energy by Eq. (9.3).

Note: The experimental value from different
experiment shows a variation. The correct choice
and some experimental considerations according
to BSM are discussed in §9.9.2 and § 9.11. 

Another needed value is the internuclear dis-
tance at the equilibrium point. In the following
analysis we will see, that the deviation from the in-
ternuclear distance estimated by the free space CL
node scale is negligible. So we may use the inter-
nuclear distance for point B (dissociation limit)
given by the equation: 

Then rotational energy by Eq. 9.3 is:

We see, that                         (9.11)
The condition (9.11) indicates that the ener-

gy of the vibrational motion could not exceed the
metastable state. Consequently this is a molecule
with a first type oscillations, according to the crite-
rion, defined in §9.5.4.1. Additional check of this
condition could be made by the shape of its PE
spectrum. The bottom edge of the peaks set is not
elevated. This is observed even for HD and D2
molecule, so for H2 it is strongly valid. (The PE
spectrum of H2 and HD are pretty close, see J. E.
Pollard et al., (1982)),

Consequently:
•  the centrifugal forces in H2 ortho-I state are 

negligible in comparison to the bonding 
forces. 

The above conclusion indicates that H2 or-
tho-I state could be considered as a typical case of
I-st type molecular vibrations, discussed in §.
9.5.4.1.

∆E0

∆E0

EB 6.239  eV=

EB' 3.163  ev=

υm
υm 18=

Be 27.30 cm 1–=

rn Lq 1( ) 0.6455Lp+ 1.795 A= =

Erot 0.02  eV=
Erot EB«
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9.7.2 Considerations for energy balance involv-
ing IG field potentials

The condition (9.11) allows to simplify the
energy balance of the oscillation  motion, by ne-
glecting the negligible rotational energy of H2 or-
tho-I. 

The energy balance should be considered for
the whole system, comprised of:

- two protons with their internal RL(T) struc-
tures and IG field potentials

- two electron of opposite QM spin, sharing
a common orbit of first harmonic

- the internal E-field enclosed in the integrat-
ed Bohr surfaces of both protons

- the CL space enclosed by the integrated
Bohr surfaces

All these energetic components are included
in  a total general energy balance between two po-
tential fields: IG field and E-field. The magnetic
filed from the orbiting electrons is locked inside the
Bohr surface and does not appear in the external
CL space. So we may consider that its energy is in-
cluded in the Bohr surface volume energy estimat-
ed by the external CL space parameters. This
means, that E-field should participate in the bal-
ance with its full static value, that is the unit charge.
From the other side, we know, that the E-field
(charge) is contributed and controlled by the IG
field. Now we are very close to the possibility to
obtain a relation between some characteristic pa-
rameter of IG field and the controlled E-field. We
may formulate this relation in a following way:
• The electrical field energy of a helical struc-

ture in CL space is adjusted to the energy of 
unit charge by the balance of IG forces. 

• The unit charge energy is equal to the Intrin-
sic Gravitational potential of the structure 
referenced to a free CL space

It is difficult to obtain the relation parame-
ters for a single particle like a proton or even for the
Hydrogen atom. However, we may obtain the rela-
tion by analysis of the motion behaviour of pair of
similar charge particle. Such particles are pair pro-
tons forming a H2 molecule together with two elec-
trons. The H2 ortho-I molecule, shown in Fig. 9.12
is quite suitable for such analysis.

 9.7.3 Definition of CIG factor and using it as  a 
characteristic parameter of the IG potentials

The IG potential between two particles can be
determined in a classical way, by separating them
from their initial distance to infinity. Mathemati-
cally this is expressed by integration of the acting
between them IG forces from the initial distance to
infinity. Let determine the IG(CP) potential (CP -
denotes the IG vectors of the central part of the
prisms) between two hadron structures. Because
we accepted that the energy of the electrical charge
is a part of the IG energy we should not take the
charge into account. The IG law varies with inverse
cubic power of the distance.

Having in mind all this considerations, the
IG(CP) potential (Energy) between the two protons
or neutrons) can be estimated by the expression. 

   (9.13)

          where:  mpo is the Intrinsic mass of the
proton, Go is the intrinsic gravitational constant

  - IG factor
Note: The factor 2 in front of the integral

comes from the two arm branches (along abcd ax-
es) of the CL space cell unit. They both are includ-
ed in the xyz cell unit to which all the CL space
parameters are referenced. All equations using CIG
factor in the following analysis confirms the need
of factor 2.

CIG factor for IG forces between two intrinsic
masses is similar as  factor for Newtonian
gravitational forces between two Newtonian mass-
es of proton. Despite the unknown value of , the
determination of the CIG factor is very useful, as
will be shown later.

9.7.4 Determination of CIG factor from the IG 
energy balance of H2 ortho-I molecule.

We are familiar with the Newtonian gravita-
tional field, electrical field and magnetic field. The
IG fields and potentials are quite more strong than
any other fields and potentials we are familiar with.
Then let formulate the energy balance between the
hadron structures by the IG potentials, according to
the considerations discussed in §9.7.2. For the
whole system including the CL space we may ex-
pect, that the following balance exists:

EIG CP( ) 2–
Gompo

2

r3
---------------- rd

rne

∞

∫
CIG

Lq 1( ) 0.6455Lp+( )2
--------------------------------------------------= =

CIG Gompo
2=

Gmp
2

Go
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IG(CP) energy = IG(TP) energy

Applying this balance for the H2 ortho-I sys-
tem, we get:

                    (9.14)
where:

 - is the IG(CP) energy
Eq - is the IG energy spent for creating the

positive unit charge of the proton
EK - is the kinetic energy of the electron.
EX - energy potential that we must identify
The energy EX may appear some of the ener-

gies shown in Fig. 9.15. Our task is to identify it.
Consideration (a): The Eq. (9.14) charac-

terizes the system without considering the quan-
tum quasishrink effect. 

For the electrical charge energy we will use
the following expression:

                                     (9.15)
The kinetic energy of the electron with first

harmonic velocity is
                           (9.16)
Substituting Equations (9.13, (9.15) and

(9.16) in Eq. (9.14) and solving for CIG we get:

     (9.17)

EX could be some of the energies of H2 mol-
ecule. Expressed in eV it could not exceed 16 eV.
For such range the value of the CIG factor (refer-
ence to energy balance in eV) in fact changes insig-
nificantly - only at 5th significant digit. 

If  , then          

If      
It is quite possible EX energy to be equal to

EB that is the difference between the dissociating
limit and the metastable state. It has been deter-
mined in §9.6.3 and given by Eq. (9.13). It is more
convenient, however, in further analysis to consid-
er this potential to the right side terms in the more
universal Eq. (9.17). Then the value for CIG factor
when used in energy balance in eV is:

  

9.7.5 Definition of emitted photon energy as an 
excess  energy in the total energy balance 
involving IG energy of the system

A. Photon emission (absorption)
In the derivation of the factor CIG the quan-

tum quasi-change effect has not been taken into ac-
count, but CIG is not sensitive to potential in a
range of few electronvolts. For determination of
the photon energy, however, this effect has to be
considered.

Using again Eq. (914) with substituted terms
( EIG(CP) from Eq. (9.13) and other terms) and  di-
viding on the unite charge q in order to obtain the
balance in electronvolts we get:

         (9.18)

The quantum quasishrink effect will affect
the orbital length . So we have to find the
proper function affecting this parameter. In fact
there are two ambiguous trends of the system:

Trend (1) The electron tries to fall to lower
quantum orbit, whose trace length is distinguished
by one Compton wavelength . 

Trend (2) The system tries to keep the
present status by small decrease of the internuclear
distance

We will analyse firstly the effect of Trend
(1) by some approximate method. From Eq. (9.17)
we have seen that the IG field energy is much larger
than other energies, so a small change of internu-
clear distance means a large energy change in the
range of system energy ESYS.

Let analyse the effect starting from the disso-
ciation limit where Lq(1) could be considered un-
changed and moving in direction of shorter rn. At
this point the orbit length is Lq(1) and its trace
length contains approximately 137 numbers of
Compton wavelengths. Changing the number of
the Compton wavelength by one, the next stable
quantum orbit may contain 136 numbers,  follow-
ing by 135 and so on. It is convenient to denote the
change of these numbers  by integer parameter .
Let denote the quasishrink length by a prime index
(‘). Then for the quasishrink trace length we have:

EIG CP( ) EX 2 Eq( ) 2 EK( )+ +=

EIG CP( )

Eq hνc mec2= =

Ek 0.5meα2c2 hνcα2= =

CIG 2hνc hνcα2 EX+ +( ) Lq 1( ) 0.6455Lp+( )2=

EX 0= CIG 5.265108 33–×10=

EB 9.7189 eV= CIG 5.265127 33–×10=

CIG 5.26508 33–×10=

CIG

q Lq 1( ) 06455Lp+( )2
----------------------------------------------------

2Eq
q

---------
2EK

q
---------- EX+ +=

Lq 1( )

λSPM

∆

LTq' LTq 1 ∆
137 )
-----------– 
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If assuming that the shape of the quantum or-
bit in a quasishrink space is preserved, then a simi-
lar expression should be valid for the size of the
quantum orbit, but the term  should be multi-
plied by the factor . This comes from the follow-
ing considerations: The trace length of the Lq(1) is

. We may make from the same length a circles
with a diameter . If  changes due to
the quantum quasi-change effect we have

. We see that  is multiplied by a fac-
tor a factor . Now if considering that the distance
is defined by a Hippoped curve with a same trace
length the condition is the same -  is multiplied by
a factor . Consequently, we arrived to the expres-
sion.

                           (9.19)

The obtained expression is only approximate,
because we have still take into account the ability
of the IG field to control the Compton wavelength
in strongly oriented E-field.

The effect of Trend (2)
Eq. (9.19) has only one dimensional spatial

dependence whose variable parameter is . But the
proximity E-filed controlled by the IG field is a
three dimensional. The possible parameters from
Eq. (9.19) that could be affected are only  and .
Obviously some additional dependence of  pa-
rameter should exist. We may try to find this de-
pendence by empirical way. Following the logical
considerations about quasi-change space we may
define the first unknown parameter as a  power de-
gree on  , and the second one as a power degree
on .

Then the expected function  will take a
form:

                        (9.20)

The quantum number  (integer) was refer-
enced to the dissociation limit of the vibrational
ladder. In order to use quantum numbers refer-
enced to this point we substitute 
where:  - is the vibrational number (also integer)
and  - is its maximum value, previously obtained
(Eq. (9.10).

If replacing Lq(1) from Eq. (9.18) by 
given by Eq. (9.20) and expressing the internuclear

change as a function of the vibrational number 
we get:

                                                                             (9.21)
where:  a coefficient defining the locus
position of the proton (Hippoped curve)

The obtained balance difference in compari-
son to the first and second terms is quite small, so
the system reacts in order to restore the accu-
rate balance. This reaction is in a form of emis-
sion (absorption) of a photon. 

When the energy difference of (9.21) is posi-
tive, a photon with the same energy will be emitted.
In such way the IG energy balance in the system is
restored. So we may consider  as a photon ener-
gy. Then plotting Eq. (9.21) in function of , we try
to obtain a best fit to the (0-v) and (1-v) optical
transitions sets, by selecting the unknown parame-
ters x and y. 

Fig. 9.23 shows a step-like plot of  in func-
tion of   with , and , together with the
vectors E0 and E1. The argument v is shifted at half
step in order the middle of the step to be between
the two sets of observation data given by vectors E0
and E1. The vertical scale is drawn reversed in or-
der to reference to energies to the necessary zero
level that appears in the top of the drawing (similar
as the vibrational curve shown in Fig. 9.15. 

                             Fig. 9.23
Fig. [9.24]. Calculated, ∆E, and estimated vibrational

levels by the optical transitions E0 and E1 for H2 ortho-I
   
The shown vibrational levels are in fact con-

tributed from the momentary balance disturbance
from both sides of the equilibrium point of vibra-
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tion. The energy difference  works symmetrical-
ly for positive and negative  quantum
displacement, so they appear with same vibrational
levels as shown in Fig 9.24. Examining the depend-
ence of the obtained plot from the parameter EX we
find that only its vertical position is influenced (it
is a same if EX is included as part of CIG). The best
vertical fit is obtained at  (eV). In Fig. 9.23
this level is shown by a dashed line. The difference
between the theoretical plot and the levels obtained
by the optical data is shown in Fig. 9.25.

Fig. 9.25. Difference between calculated and
experimentally determined vibrational levels

The final expression for calculating the vibra-
tional level of H2 ortho-I molecule which configu-
ration is shown in Fig. 9.12 is:

                                   (9.23)
                                                                            

             (9.23.a)
where:
         [eV] is the vibrational level of H2 ortho-I
molecule, Eq and EK are given respectively by Eqs.
(9.15) and (9.16); r - is the internuclear distance in
function of vibrational number 

  (eV). 
The good match between the calculated re-

sults and experimental data allows to identify the
energy levels of H2 molecule in order to define the
position of the vibrational ladder in respect to other
experimentally determined energy levels - the
binding and the dissociating energies (see Fig.
9.15). 

The energy difference between level 0 and
 obtained by Eq. (9.23) is 4.483 eV. This

value is pretty close to the dissociation energy ob-
tained experimentally . The energy
difference between dissociation limit and the
metastable state is . The binding

energy of H2 is an accurately measured parameter:
 (E. McCormack et al., 1989). Then

we obtain  that corresponds to the dis-
tance between the metastable state and the ioniza-
tion limit.

It is found that the obtained parameter Eq.
(9.23) provides exactly the same results  if the off-
set value of 6.26 (eV) is ether a part of CIG expres-
sion  according to Eq. (9.17) or outside of it as in
Eq. (9.23). Accepting the second option, allows
CIG factor to be defined independently of its in-
volvement in any molecule and expressed accu-
rately by known physical constants. Determined in
such way it could be conveniently used in further
analysis for more complex diatomic molecules.

     (9.17)

                    (9.25)

According J. H. Black and A. Dalgarno,
(1976) the excited H2 by UV radiation (Lyman and
Werner system) leads to “fluorecsence to the vibra-
tional continuum of the ground electronic state,
thus resulting in two separated atoms”. The provid-
ed above analysis is in agreement with this concept.

The results obtained by the provided analysis
lead to the following conclusions:

(a) The value of CIG factor is pretty accurate-
ly  expressed by known physical constants

(b) The equation (9.23) shows the IG field
balance and its control function on the charge unity
and  internuclear distance.

(c) The H2 ortho -I state could be regarded as
a bonding structure between atoms in the mole-
cules in case of valence proton without connected
to it neutron. (In case of connected neutron - Deu-
teron Eq. (9.23) is slightly modified - see §9.8)

B. Energy scale ratio and signature about high 
precision accuracy in the total energy balance 

The CIG factor could be considered as a basic
intrinsic matter parameter. It involves only an
equivalent intrinsic gravitational constant, Go, (for
the mixture of two type intrinsic matter in CL space
and in particles) and the intrinsic mass of the proton
(or neutron, having in mind that the proton and
neutron have exactly the same intrinsic matter, re-
ferred in BSM as intrinsic mass).

∆E
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Eυ
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The corresponding factor for Newtonian
mass is 

where: G -is the Newtonian gravitational constant
and mp - is the proton mass. Then the ratio between
both factors is:

                              (9.25.a)
The ratio (9.26) could be regarded as an ener-

gy ratio between the IG field and the Newtonian
gravitational field. It indicates that IG energies are
enormously large in comparison to the Newtonian
gravitation energies. They in fact are responsible
for the “infinities” in Faynman diagrams in particle
collision experiments.

Having in mind the enormous ratio ,
one amazing feature of the H2 system is apparent:
the ability of the system to provide an extremely
accurate balance of the total energy of the system.

C. Components involved in the total IG energy 
balance and the relations between them. 
Energy balance between IG(CP) and IG(TP) of 
the system

The extremely accurate balance of the total
energy according to Eq. (9.23) leads to one ques-
tion: What is the driving mechanism, that is able to
provide so accurate balance? The possible answer
is:

This could be the balance between the en-
ergy of IG(CP) and the energy of IG(TP) vectors
of the whole system, including the CL space and
the local gravitational field. 

The system possesses self adjustable parame-
ters as: the node distance for the local CL space and
the E-field distribution inside the Bohr surface. The
effect of Bohr surface integration also should be
taken into account (involving synchronization be-
tween  RL(T) of all FOHSs of the protons and the
interaction of this commonly synchronized system
with CL nodes).

In such aspect, it could be considered that the
mechanism providing the accurate energy balance
of Eq. (9.23) is defined by the balance between the
IG(CP) energy and IG(TP) energy of the whole
system. In Chapter 2 §2.9.6.B it was accepted a pri-
ory, that the energy balance between both type of

intrinsic energies in CL space  is expressed by the
equation:

                             
where:  - is the fine structure constant
This acceptance is successfully validated in

§9.15.2 for derivation of total energy balance of
simple diatomic molecules. 

Analysing logically, let try to find to which of
both IG energies anyone of the energy terms in Eq.
(9.23) is related and also to shed a light on the IG
energy involvement in the unit charge definition.

The term of Eq. (9.23) containing CIG origi-
nates from EIG, whose derivation was based on Eq.
(9.13) with the presumption, that it is related with
the IG(CP) field. According to Eq. (9.14) it sup-
plies the energy for the proton electrical charge.
Additionally, according to Eq. (9.23) it is able to
regulate the proximity E-field of the proton (quan-
tum quasishrink effect). In a same logic we can ac-
cept that it is involved in regulation of the E-field
inside the Bohr surface of single not connected pro-
ton defining in such way the unite charge of the
proton. In the latter balance, however, the IG(TP)
field may also be involved. The unit charge accord-
ing to BSM concept could not be defined without
CL space environment with its CL node dynamics.
Then we arrive to a conclusion that the following
components may be involved in defining the unit
charge:

- IG(CP) field
- IG(TP) field
- CL space parameters

D. Range of vibrational motion of the protons 
in H2 molecule

The range between min and max internuclear
distance for analysed H2 molecule is obtainable di-
rectly by  Eq. (9.23.a) if substituting  with  and
with zero and take the difference. Having in mind
that that the  is in the middle of the vibrational
range, the obtained expression for the vibrational
range is

                                   (9.26)
For  the range of vibrations is only

 (m).
The obtained range is  even smaller than the

thickness of the proton core .
However, the result is reasonable, when taking into

CN Gmp
2 1.866772 64–×10= =

CIG/CN 2.8204 31×10=

CIG/CN

EIG TP( ) 2αEIG CP( )=
α

υ υm

υ 0=

δr 2πα4υm
2 Lq 1( )=

υm 18=
δr 7.866 16–×10=

tp 0.784 12–×10   m=
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account, that the oscillating range is a few electron-
volts, while the involved IG field energies are in
megavolt range.

The analysis of diatomic molecules with dis-
crete spectra presented in BSM_Appendix9_1 also
shows quite small vibrational range in a length
scale. This means, that the vibrational motion
does not involve significant inertial interaction
with CL space involving displacing and folding
of CL nodes. Then for a practical considerations
we may assume that the internuclear distance is un-
changed. The rotational motion and its anticipated
energy however exist. The negligible vibrational
range in comparison to the internuclear distance al-
lows to facilitate the  theoretical analysis by the fol-
lowing considerations:

(a) The system does not spend vibrational
energy for inertial interactions between the nu-
clei and the CL space, but only rotational.  The
transitions between different levels are pure
quantum mechanical transitions related to the
quantum quasi-change (space) effect.

(b) The system energy ESYS could be accu-
rately calculated, by operating with the param-
eters of the free (external) CL space including
the length scale.

(c) The lack of detectable time delay in the
Ramman process obtains a physical explana-
tion.

The conclusion (b) has been already con-
firmed by calculation of ESYS by Eq. (9.4) and
compared with the value known as Average kinetic
energy 15.98 (eV).

The conclusion (c) is confirmation of the dis-
cussion analysis about the Ramman scattering pro-
vided in §9.5.8.

The derived model of H2 ortho-I could be re-
garded as one valence bonding system between two
atoms. In many atoms, however, the valence con-
nections involves Deuterons structures instead of
protons. So it is necessary to obtain a similar equa-
tions between two Deuterons.

Summary
• The Intrinsic factor for IG(CP) forces 

between IG masses of two protons is derived
• The derived energy balance equation (9.23) 

provides a model of single valence electronic 
bonding system involving valence protons. 

The bonding connection can be identified by 
analysis of the optical and PE spectrum.

• The process of photon emission or absorp-
tion is related with the momentum imbal-
ance of the total energy of the system 
involving IG filed components. 

• The size of the vibrational range estimated in 
external CL space is very small. This fact 
facilitates the task for estimation of the sys-
tem energy, that for H2 molecule matches the 
value of EVIP potential (average kinetic 
energy). It also helps finding the spatial con-
figuration of the molecule, by using the 
dimensions of the proton and the particular  
quantum orbit that have been defined in a 
normal CL space (ignoring the quantum 
quasi-change effect).

9.8 D2 ortho-I molecule as a single valence  
bonding system in molecules.

Most of the atoms contain Deuterons in the
external valence shell instead of protons. Some
heavier atoms contain Tritii. 

It is quite logical to expect, that the D2 will
have similar oscillating behaviour, as H2, but mod-
ified by the two neutrons. The neutrons are over the
saddle point of each proton so the internuclear dis-
tance between the protons and deuterons is one and
a same. Logically thinking the both deuterons will
affect the degree of the quantum quasishrink space
in the integrated Bohr surface. Consequently we
may try to use the derived for H2 molecule, Eq.
(9.23), but searching for a proper correction factor
for the term . This correction will affect the cur-
vature. Another correction, affecting the vertical
position of the vibrational levels should be related
with EB for D2. The CIG factor obtained by H2
model, however is intrinsic IG field parameter and
should be used without change for D2 case. So the
second correction should be independent of CIG
factor.

The procedure is exactly the same as for H2
and no need to be described in details. It is useful to
show the PE spectra of D2 and H2 at one and a same
observational conditions. Fig. 2.29 shows PE spec-
tra of H2, HD and D2 obtained at one and a same
observational conditions (pressure and tempera-
ture) provided by  J. E. Pollard et al. (1982). The

∆2
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optical spectrum provided by H. Bredohl and G.
herberg (1973) denoted as Lyman band of Deuteri-
um, matches the spectrum of D2 ortho-I  (according
to BSM).

                             Fig. 9.29
The 584 A photoelectron spectra of H2, HD and D2
expanded from 200 Torr at 77K.
 (courtesy of J. E. Pollard et al. (1982)

By PE spectrum we obtain:
. The identification of

EVIP only by the most populated bands of the opti-
cal spectrum for D2 is not so obvious as in the case
of H2. But using the simultaneous signature of the
vibrational levels in the PE and optical spectra, the
identification of EVIP level is still possible. If as-
suming that the Energy level EB is close to the
same energy level for H2, then we have:
 . Using the observed data pre-
sented by H. Bredohl and G. Herzberg, (1973), the
obtained energy corresponds to the mean energy
value of optical (0-4) and (1-4) transitions. The
available observed spectral data are from (0-3) to

(0-10) for (0-v) set and from (1-3) to (1-12) for (1-
v) set.

Following a procedure similar as for H2, it is
found that the optical transitions that match better
the PE spectrum are again from (0-v) and (1-v)
transitions. The largest vibrational level identified
by PE spectrum matches well the identified optical
transitions. In order to obtain a best fit between the
optical transition sets and the calculated data, the
Eq. (9.23) is used but with correction factors for the
curvature (multiplying factor for the term

) and for the vertical positions value of
EX. The both correction factors are obtained by
tuning of the calculated vibrational curve to the en-
ergy levels identified by the optical spectrum of D2.

The obtained equation for the quantum vibra-
tional levels for D2 ortho-I state is:

                                                         
                           (9.27)

       (9.27.a)

where: CIG - is given by Eq. 9.25;
Eq - is a charge energy defined by Eq. (9.15)

and Ek is the electron kinetic energy, given by Eq.
(9.16). 

The energy 6.235 eV is distinguished from
the corresponding energy of 6.26 eV (for H2) only
by 0.025 (eV). 

0.5 - is a correction factor for curvature.
The correction factor of 0.5 is reasonable if

taking into account that every proton has a neutron
in its saddle. This neutron may influence the
strength and range of the quantum quasi-change ef-
fect (length scale) causing an extended vibrational
curve with different curvature. 

The deviation  from the equilibrium point
for D2, derived in a similar way as for H2 (see Eq.
9.26) is given by the equation:

                                  (9.28)
We see that the vibrational range for D2 is

twice smaller than for H2 molecule, due to the fac-
tor 0.5 that affects the curvature of the vibrational
ladder. This is reasonable if taking into account that
the internuclear distance will be little bit smaller
and the effect of highly nonlinear IG forces is
stronger.

The plot of calculated vibrational levels by
Eq. (9.27) together with identified levels from op-

EVIP 21.23 5.05– 16.18 eV= =

16.18 6.26– 9.92 eV=

α4π υm v–( )2

EV υ( ) =
CIG

qr2
--------- 6.235

2Eq
q

---------–
2Eq

q
---------–+

r Lq 1( )[ ] 1 0.5πα4 υm υ–( )2–( )[ ] 0.6455Lp+=

∆r

δr πα4υm
2 Lq 1( )=
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tical spectrum in UV range of D2 are shown in Fig.
9.30. 

                        Fig. 9.30
Theoretically calculated by Eq. (9.27) vibrational levels

(step line)  and experimentally determined vibrational levels
involved in (0-v) and (1-v) transitions (daimon points) for D2
Lyman bands
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