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9.9 Interactions in quantum quasishrunk space

9.9.1 Reference parameters for the quantum 
quasishrunk space

In order to understand the physical aspect
of the quantum vibrational conditions for mole-
cules, we have to analyse some aspects of the mo-
tion from a point of view of the quantum
quasishrink space.

The plot of Eq. (9.26) shown in Fig. 9.28
shows that the vibrational range is negligible, when
estimated by the external length units. Although,
Eq. (9.26) still defines a finite distance change 
for any . So the intrinsically small value of  still
could be used as a parameter addressing the respec-
tive energy levels. Then we may use this parameter
as a quantum parameter. For H2 molecule it is giv-
en by Eq. (9.26) and for D2 - by Eq. (9.28).

The quantum rotational - vibrational mo-
tion could be presented by the symbolic plot shown
in Fig. 9.31. 

                    Fig. 9.31
Symbolic plot of the vibrational rotational motion

The range of  is shown by contour lines.
The close spaced lines indicate the lowest energy
level. This is inverse to the QM model. The plot is
called symbolic for two reasons:

- the vibrational range of  is magnified
enormously in comparison to the internuclear dis-
tance. 

- the radius r is a half of internuclear dis-
tance, but it could be normalized to the internuclear

distance, for convenience.. We may refer it as a ra-
dius vector of the symbolic plot.

- the stroboscopic trace with elliptical shape
will be explained later

Analysing the possible transitions between
the vibrational levels in the simultaneous rotational
and vibrational motion, we see that the radius vec-
tor may not pass through the equilibrium. Instead,
it may jump to a lower point of the opposite side
with emission of the energy difference. From a
point of view of the IG fields potential balance, it is
not possible the vibrations to be only from one side
of the equilibrium.  This is a apparent from the en-
ergy balance discussed in §9.7.4 and Eq. (9.23). So
a possible passing between same energy levels re-
siding on both side of the vibrational ladder could
be also possible. Only by this feature, some molec-
ular states exhibiting a long radiation lifetime could
be explained.  

It is reasonable to consider that a relation
between the rotational and vibrational frequencies
exists. From the symbolic plot it is evident that if
their periods are equal, the positional molecular
momentum is not balanced in respect to the station-
ary frame. When the rotational period is equal to
two vibrational periods, it is balanced. In this
conditions one rotational period corresponds to a

 cycles of the radius vector of the symbolic plot,
while the vibrational one - to one half or . Then
for the analysis of the vibrational motion, a one half
or one forth of the symbolic curve could be used.

9.9.2 Vibrational level Quantum zone range
Despite considering the vibrational energy

levels as fixed, the distance between them may al-
low additional small quantum levels. It is equiva-
lent to consider that vibrational levels exhibit a
small change as a result of some quantum interac-
tions.

The energy range of any vibrational level
could be presented as a difference between two
consecutive neighbouring levels. Let assuming that
due to the self adjusting internuclear distance, the
shape of the orbits for H2 and D2 is not changed, so
the parameter .  The corresponding
distance change then will be proportional to the
change of the orbit length. Let consider the case
when the molecule possesses a lowest vibrational
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rotational energy. Then it is in a vibrational level 0,
corresponding to the equilibrium. Now suppose the
molecule is activated to the neighbouring level 1.
The distance change in quantum length units is 

 (m)                       (9.29)
The corresponding fractional change is

                     (9.30)
Now we have to look for a similar change

of some basic parameter related with frequency.
It is reasonable to look for a possible

change of some CL space parameter with a dimen-
sion of frequency. More appropriately we may ex-
amine the fractional change of some frequency,
when changing the proper number of cycles with
one.

 The possible CL space related parameters
with frequency dimensions are the following:

- the proper frequency (a) of the electron shell-
positron: 

- the proper frequency (b) of positron-core: 
- number of cycles of oscillations of (a) and (b)

frequency in one orbital quantum time: 56335 and
169005 respectively

- number of resonance cycle of CL node (calcu-
lated in Chapter 2) :  

The closer value to Eq. (9.30) is

 .                          (9.31)

This is the fractional NRM frequency change
per one SPM cycle. It is reasonable to expect that
the quantum condition is defined by the change
of the number of the resonance cycles per one
SPM cycle (for CL node) because the both pa-
rameters - the number of the resonance cycles
and the time base for the SPM cycle are natural-
ly defined. 

The time base parameter is the time per one cy-
cle of SPM vector, expressed by the Compton time.

In fact the calculated value of Eq. (9.30) is clos-
er to  multiplied by 8.

                                 (9.32)
Combining Eq. (9.29) and (9.30) we may ex-

press the quantum conditions for any neighbouring
levels

                           (9.33)

where:  
In a similar way the proportionality of condi-

tion (9.32) applied for different level spacing may
be expressed as  

   for H2 molecule                     (9.34)
  for D2 molecule                    (9.34.a)

Equation (9.33) can be applied for H2 and D2
molecule, while their  parameters are different. 

Equations (9.33) and (9.32) calculated for
 (for H2) are plotted in Fig. 9.32  .

                                     Fig. 9.32
         Correlation between the fractional change of 
         the quantum length and NRQ frequency
         for H2 -ortho-I molecule

A similar plots for D2 ortho-I molecule are
shown in Fig. 9.32.A.

The plots for H2 and D2 molecules show the pe-
riodicity match between  and , with a same
common parameter . Consequently, the
quantum conditions are defined by the stroboscop-
ic match of the IG fields balance with the CL space
parameter NRQ. In the same time, the periodicity
between  and  determines the widths of the vi-
brational zones. 

                             Fig. 9.32.A
      Correlation between the fractional change of 
         the quantum length and NRQ frequency
         for D2 ortho-I molecule
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The plots of  and  show departure for a larg-
er i ( ). The departure is smaller for D2. This
means that the IG fields balance for D2 molecule is
fulfilled for larger quantum numbers  in compar-
ison to the H2 molecule. 

Equations (9.34) for H2 and (9.34.a) for D2 for
i = 1 ( ) provide the limit of the lowest (zero)
level zone. They both have a periodicity of ,
while  itself defines the limit.

The zero zone range for D2 obtained by Eq.
(9.27), is 0.007284236 eV. Dividing the zone
range by the periodicity 4 we get:  1.821E-3 eV.
Converted directly to wavenumbers it is 14.6878
cm-1. This is very close to the rotational con-
stant , determined by Cunningam
and Dieke, (1950) and cited in http://web-
book.nist.gov/chemistry. 

Consequently, the obtained value is a result of
direct CL space pumping by fundamental frequen-
cy set. So it is calculated by the theoretical equa-
tion:

           (9.35)

Now the physical sense of the fundamental mo-
lecular set becomes apparent. It could be presented
as a classical resonance with a finite range, but
strobed by the allowed quantum conditions defined
by the  parameter, given by Eq. (9.31). In this as-
pect, the rotational constant is the wavenumber of
the directly pumped and emitted photon in the zero
zone of the vibrational curved.

9.9.2 Cross verifications of the vibrational rota-
tional parameters of H2

A. For the H2 molecule, the zero zone range
is 0.013822 eV and the Eq. (9.35) provides a val-
ue of 27.87 cm-1. This value is quite close to the
value Be = 27.30 cm-1, given by Dieke and Blue,
(1935) and Dieke (1958) cited in the NIST data
(the same website, as given above). Different ex-
periments show a variation in about 4 cm-1. The
consideration for the selected above experimental
value are discussed in §. ... 

B. The “fundamental frequency” calculated by
QM is 4159 cm-1 (D. A. McQuarrie, Quantum
chemistry, (1983)). This value corresponds to a fre-

quency calculated by Eq. (9.A.3). Applying the
BSM correction according to Eq. (9.A.4) (multi-
plying by  we get a corrected value of
55.82 cm-1. This should be the equivalent molecu-
lar frequency according to BSM concept. The ob-
tained value appears very close to twice the
theoretical value of 27.87 cm-1, determined by the
methods of the quantum mechanics.

 .
C. The equivalent molecular frequency could

be approximately determined by the maximum of
the envelope of the rotational curve, given by QM
equation (9.A.7). Really, for temperature about 77
K, the maximum is very close to twice J number
giving the same value as in case B. 

D. Relation between the vibrational and rota-
tional period and the CL space time constant.

In the end of §9.9.1 a consideration was ex-
pressed, that the vibrational and rotational frequen-
cy are related by ratio 2:1. Such ratio appeared in
case B and C. Let calculate the corresponding cycle
periods by the expression: . The results
are given in Table. 9.4.

Relation between the cycle period of the                 Table 9.4
vibrational and rotational motion of H2
ortho-I and CL space time constant 
===========================================
Type of motion                     T                     
                             [cm-1]      [sec]                                             
-------------------------------------------------------------------------
Rotational              27.87      1.1969E-12      
Vibrational             55.74      0.5984E-12     
-------------------------------------------------------------------------

For D2 ortho-I molecule the theoretical re-
sults are:

 for rotational motion
 for vibrational motion

The close value of the cycle period to the CL
time constant means that strong interactions exist
between the molecular oscillations and the SPM
vector. The vibrational cycle period of H2 and D2
is half of their rotational cycle period. Then the vi-
brational trace in quantum units will have a shape
of ellipse. Such trace may pass through the whole
vibrational ladder, while satisfying at the same
time the quantum conditions. This means, that the
allowed fine energy levels will be influenced by the
proper match of the NRQ frequency phase, in a
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similar way as the matching curves for  and ,
shown in Fig. (9.32) and (9.33). This is a type of
stroboscopic effect between two systems with
different but close periodicity. (A practical exam-
ple of such effect is a common motion of mechan-
ical system with periodicity. When such system is
illuminated  Moire’s patterns are observed). The
vibrational cycle in such conditions appears as a
trace of discrete levels. It is illustrated graphically
by blue dots in the symbolic plot shown in Fig.
9.31. 

9.9.3 Distribution of the quantum transitions 
along the vibrational trace

In the Balmer model we found, that the total or-
bital time approaches the CL time constant tCL, but
is little bit lower, because two quantum conditions
then becomes in conflict. The same orbital time
conditions should be valid for the molecular bond-
ing orbit and electron. Having in mind that the  pe-
riods of the two cycles are close to the CL time
constant, we may accept, that the start time of CL
pumping and photon emission are well distributed,
along the vibrational curve, but with some repeata-
ble conditions for their position. At the same time,
the rotational angular velocity may be considered
as not dependent on the vibrational motion, be-
cause practically the internuclear distance estimat-
ed by the free CL space is not changed. Then we
may derive the relative dependence of the momen-
tum intrinsic energy  from the phase of the vibra-
tional motion. 

Figure 9.32.B illustrates the trace of the vibra-
tional motion as a symbolic curve.

                              Fig. 9.32.B

Note: The radius vector r in the symbolic plot is
not proportional to the internuclear distance in free
CL space but to some normalized value in the qua-

sishrunk space. In such aspect rmin and rmax are ref-
erenced to the quasishrunk length unit

Points A and B are symmetrically situated from
the both sides of the equilibrium trace. Although
they correspond to one and a same energy (of the
vibrational level), they are physically separated.

Here we will consider a balance between two
intrinsic energies: the vibrational and the gravita-
tional whose distribution corresponds to:

vibrational energy: by IG(TP)   for  
attraction energy: by IG(CP)   for 
It is more convenient to use the ratio between

rmin and rmax     
Let examine the energy distribution in a limited

angle of the radius vector around X and Y axes, for
example within angle of  . 

Firstly, we may determine the change of radius
vector as a function of angle deviation, but normal-
ised to the corresponding value at the positions A
and B respectively:

  around point A

  around point B

The corresponding IG energies are inverse
square dependent on the distance change. The nor-
malization of the radius vector for points A and B
in fact is justified from the energy point of view. If
assuming transitions between the corresponding
energy levels and the lowest vibrational level, the
energy difference will give the photon energy. So
the expressions of the energy envelope of the cor-
responding spectral line are respectively:

   for a zone around  A    (9.36)

 for a zone around B  (9.36)

The different sign of both energy comes artifi-
cially from their referencing to the equilibrium.
The factor comes from their normalization about
the unity for both energies. The  plotted curves of
EA and EB for parameter  are shown in Fig.
9.33.
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                             Fig. 9.33
               Shape of the energy envelope of the spectral
               lines for one band of H2 spectra

The shown plot corresponds to the shape of the
energy envelope of the spectral lines from P and R
branches for consecutive rotational levels:

EA - corresponds to P branch from one band
EB - correspond to R branch from the same

band
The P and R branches of the vibrational-rota-

tional spectra of the ortho-I states of H2 and D2
molecules exhibit a similar signature. Figure 9.34
shows the energy position of the lines from the P
and R spectral branch of H2 for (0-v) transitions.
According to BSM model, there is not a reason for
offsetting the J numbers of P and R branch by one.
So the both branches are shown with equal start.
The data are taken from I. Dabrowski, (1984) (Ly-
man system  

                         Fig. 9.34
               Energy position of the lines from P and R spectral
               branches of H2 for (0-v) transitions.

Fig. 9.34 shows a similar plot for D2 ortho-I
state. The spectral data are provided by H. Bredohl
and G. Hezberg, (1973).

                              Fig. 9.35
     Energy position of the lines from P and R spectral
     branches of D2 for (0-v) transitions.

The comparison between both figures indi-
cates, that the eccentricity of the vibrational trace
for D2 molecule is much smaller. This is a result of
the influence of the neutron, which is over the pro-
ton saddle. This also shows that the confinement
between the vibrational cycle and the SPM vector
is larger for H2. When examining the lines from the
first few vibrational numbers (directly from the
spectra), we find that the difference between them
for less energetic bands is quite small. For some
bands, the trend for the second and even third vi-
brational number is reversed. This effect is weaker
for H2 but much stronger for D2. It appears only for
R branch, but never for P branch. The explanation
of this effect is the following. For lower vibrational
energy, the molecule exhibits a stronger confine in-
teraction with the SPM vector, because of the close
proportionality between the vibrational period and
the CL time constant. Then a second mode appears
in the vibrational trace. This mode is stronger in D2
molecule because its vibrational trace is with

B1Σu
+ X1Σg

+–( ) 0 ν''–( )
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smaller eccentricity. The second mode is illustrated
in Fig. (9.36). 

                                   Fig. 9.36
           Second mode in the vibrational trace

In order to provide some quantitative prove of
the stroboscopic effect between  and , we can
make one additional test with H2 data: displacing
the P from R branches with  some  until good
match of some set is observed.  This is done in Fig.
9.37, where the P branches are displaced by 

                       Fig. 9.37 
Test of possible stroboscopic effect  between
the two sets (  and ) by displacement of 
 the P branches in respect to the R branches 

9.9.4 H2 ortho-II state.
This state of Hydrogen molecule has been

shown in Fig. 9.4., which is given below again.

                                  Fig. 9.4
                   H2 ortho-II state configuration

The sections of the two proton cores are
shown as small black circles. The common quan-
tum orbit is consisted of two serially connected
first order quantum loops. The two electrons posses
an opposite QM spin. The arrows show the trace di-
rection of one electron and simultaneous positions
of the two electrons.

Due to the extended shape of the molecule it
could vibrate in two possible modes:

- stretching (without bending)
- stretching and bending
The stretching mode is characterized by P

and R branches only. The stretching with bending
is characterized with P, R and Q branches. The
bending causes asymmetrical distortion of the
quantum orbit, as discussed in §9.5.7.4.1. 

Observations of such spectra is provided by
T. Namioka (1964). The data indicated as 
bands correspond to the first mode, while the data
indicated as  bands - to the second mode. Ta-
ble 9.4 shows the energy levels of the first J lines
from the P and R branches of  transitions,
from  bands.

Optical transitions (0-v) of H2 ortho-II       Table 9.4
===========================================
Transition         
                   First J of R (eV)    First J of  P (eV)     
-------------------------------------------------------------------------
(0-0)              13.7                    13.683                   13.69
(1-0)              13.936                13.92                     13.928
(2-0)              14.149                14. 129                  14.139
(3-0)              14.338                14.318                   14.328
(4-0)              14.498                14.48                     14.489
(5-0)              14.616                14.598                   14.607
(6-0)              14.652                14.636                   14.644
(7-0)              14.664                14.649                   14.656
(8-0)              14.672                14.657                   14.664
-------------------------------------------------------------------------
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Without plotting the photon energy, it is evi-
dent that the larger energy is at (9-0) transitions.

Now let make a simple analysis of the H2
ortho-II configuration, shown in Fig. 9.4. If accept-
ing that the orbital shape is made of aligned circles
and the sections of the proton core are centred in
these circles as shown in the figure, the total trace
length is:  Dividing on the trace
length of the first harmonic quantum loop we ob-
tained ratio of 1.89067. In order this ratio to be
equal to the closer integer 2, we have to correct the
length by . With the same factor the
internuclear distance should be corrected, or:

 . 

Using this value for internuclear distance as
for H2 ortho-I, we get:

           (9.28)

Subtracting from this value the photon ener-
gy of the largest optical transition (9-0) we get:

. The half of this value is
6.272 eV, which is very close to EBEP for H2 ortho-
I state (6.26 eV), known experimentally and deter-
mined theoretically in §9.7.3. This coincidence is
confirmation for the correctness of the configura-
tion shown in Fig. 9.31.

The two different modes exhibit different vi-
brational constants referenced to level v=0. The vi-
brational constants provided by Namioka, based on
the observations are shown in Table 9.4 with iden-
tification of the vibrational mode by BSM.

                                                                    Table 9.5
===========================================
State        v     observed  Be (cm-1)       mode according to BSM
-------------------------------------------------------------------------

     0         25.42                           stretching only
    0         25.43                            stretching only
    0          31.14                           stretching + bending
   0          31.20                          stretching + bending

-------------------------------------------------------------------------
The appearance of two different data for eve-

ry mode according to BSM is a signature of ellipti-
cal shape of the vibrational trace in quantum
quasishrunk units. The effect discussed in §9.9.3.
could be valid also for H2 ortho-II state.

9.10. H2 para molecule as a most simple exam-
ple of diatomic homonuclear molecule with a 
quasirotational vibration

The quasirotational vibration has been in-
troduced in §9.5.4.1 and additionally discussed in
§9.5.7.4. The basic condition for such motion re-
quires the molecule to have at least two electronic
bonds. For such bonds two spatially displaced
quantum orbits are needed. The simple H2 para
molecule satisfies this conditions. Its configuration
has been shown in Fig. 9.5. One distinguishable
feature of the para-state is that the electrons do not
share a common orbit. It has been pointed out that
the quasirotational motion is identified by the Q
branches in the optical spectrum. The P and R
branches are contributed by the quasilinear bond
oscillation, while the Q branch - by the bond acting
as a centre of the quasirotational motion. So the
first type bond emits (photons) by stretching
(shrinking), while the second one - by bending.
These functions exchange alternatively between
both bonds. So the equilibrium is in the moment,
when the polar axes of the two protons are parallel.
At the equilibrium point, the orbital energy could
not be smaller than this of  the first quantum orbit
(13.6 eV). So we arrive to the same definition of the
system energy as for the H2 ortho-I state (factor
two in the nominator of Eq. (9.10)), but for a nucle-
ar distance defined directly by the length of the
quantum orbit. Then the system energy equation of
the H2 para state is:

                    (2.28)

The Eq. (2.28) shows that the photo-elec-
tron  spectrum from H2 para state could not be ob-
served by using the He line of 584 A (21.23 eV).
The optical spectrum of this state is known as
Werner band or  system. Observation-
al data are provided by Dabrowski (1984). The op-
tical transitions of Werner band go to higher
energies than the Lyman band. This indicates, that
the para state has a higher bonding energy. Without
a photo-electron spectrum, however, we can’t ap-
ply the same method for estimation of  this energy,
as for H2 ortho-I state.
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9.11. Discussion about the bonding energy at 
equilibrium and the rotational constants of H2 
and D2 molecules.

In the previous paragraphs we saw that the
different states of the H2 molecule should have dif-
ferent bonding energies at the equilibrium and dif-
ferent rotational constants Be, referenced to a level
zero.

 This explains the large variation of the con-
stant Be, calculated by the observed spectra. BSM
is mostly interested of the parameters of H2 and D2
ortho-I state, as they appear as bonding systems be-
tween the atoms in the molecules. For this reason,
the evaluated constants are seeded out in order to
determine the correct state. To seed out the corre-
sponding value, the following criteria are used:

- the higher energy range of the observed
spectrum and its match to the the theoretical calcu-
lation of the system energy 

- the match between the optical and corre-
sponding photo-electron spectrum (if the latter is
available)

- excluding observations, where Q branches
appear

The last criterion, for example, excludes
number of observations, and they usually provide
Be in order of 30 cm-1.

One of the correct seeded value is Be = 27.30
cm-1, provided by Dieke and Blue, (1935) and
Dieke (1958). It is very close to our theoretically
calculated value of  27.87 cm-1.

9.12. Verification of CIG factor. 
The factor CIG was derived for IG(CP) forces from
the analysis of H2 molecule in §9.7.3 and stands
for:   where  is the IG constant partic-
ipating in the inverse  cubic IG law and corrected
for CL space asymmetry (the different dimensions
of the right and left-handed prisms),  - is the in-
trinsic mass of the proton (neutron). 

9.12.1 Binding energy between the proton and 
neutron in the Deuteron system.

The CIG factor was theoretically derived and
its value adjusted to a high precision by the exper-
imental data for H2 molecule. 

In Cahpter 2 §2.9.6.B it was accepted apriory,
that the energy balance between both type of intrin-

sic energies in CL space (associated with the cen-
tral part of the twisted prism model and its
peripheral part ) is expressed by the equation:

                             (9.36)
where:  - is the fine structure constant
The validity of the CIG factor and the relation

between IG(CP) and (IG(TP) energy could be addi-
tionally verified, by  calculation of the binding en-
ergy between the proton and neutron in the
Deuteron system. The experimental value of this
energy is known with a high precision.

The approach used for calculation of the
binding energy is illustrated by Fig. 9.38, where;

                                 Fig. 9.38
     Approach used for calculation of the binding
     energy between the proton and neutron in 
     the Deuteron system

Fig. 9.38 a. shows the real configuration of
the Deuteron.

Fig. 9.38 b. provides equivalent model,
where the neutron is presented as a mass ring and
the proton as a mass bar, both possessing the same
intrinsic mass (the intrinsic masses of proton and
neutrons are equal). The length of the bar is an
equivalent length of the proton, presented in this
way.

Fig. 9.38 c. provides additional simplifica-
tion by presenting the bar as a mass point with a
same intrinsic mass and position at proper distance
xo from the ring position on the axis x. 

CIG Gomo
2= Go

mo

EIG TP( ) 2αEIG CP( )=
α
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We may estimate the binding energy by the
energy of disintegration. i. e. the work done for
moving the proton along the x axis to the infinity in
respect to the neutron (or vice versa). This is like
estimation of a classical potential by integration
from some initial value to infinity. So the first as-
sumed consideration is:

Consideration (1): The binding energy is
equal to the disintegration energy when separating
the proton and neutron of deuterium atom by mov-
ing the proton from neutron along the axis x.

In the real situation, when a large number of
deuterons may exists in a finite space volume, the
integration to infinity is not possible. But we will
show later that even an integration at very small
distance, B, comparable to Lpc is enough for a good
estimation of the disintegration energy, because the
IG forces fall with the cub of the distance.

One question may arise: Why the mass point
M is not in the middle of the ring, but displaced at
distance xo?

The possible answer of this question is: When
the bar is pulling out of the ring along the x axis, the
IG(TP) interactions are involved. In this interac-
tions, the pull-out energy for any of differential
mass point residing on the right side of the bar is
not compensated by insertion of a symmetrical
point from the left side. Then we accept considera-
tions (1) and (2), which will become more evident
later

The process of bar axial removing could be
considered as removing of the two half of the bar in
opposite direction.

Consideration (2): Let considering the mass
and ring respectively as a linear and curvilinear
massive structure. Then their masses are complete-
ly defined by their length.

In the following mathematical model, the
mass point M and the one dimensional bar are both
regarded as a sum of equal number of small differ-
ential masses. Then applying consideration (1), the
disintegration of the mass point  in case c. starting
from some initial distance xo is equivalent to disin-
tegration of the bar in case b.

The mathematical approach for derivation the
distance xo is simplified if regarding the ring and
the bar as a one dimensional structures according to
the consideration (2):

For derivation of the disintegration energy,
the gravitational potential is initially derived. The
process is clarified by Fig. 9.39.

                          Fig. 9.39

Fig. 9.39 shows a point of the bar with differ-
ential mass dm2. Using a classical approach, we de-
rive the gravitational field of unit mass point from
the bar as a function of distance x. (a trivial classi-
cal problem but for inverse cubic dependence of
the attractive force)

                            (9.37)

where: gx is the axial component of the grav-
itational field; r is the neutron radius, Go is the in-
trinsic gravitational constant, x - is the distance of
the point dm2 from the ring centre, r - is the ring ra-
dius, m1 is the ring mass

The neutron radius is a double folded torus
(protoneutron), so expressed by the proton core
length it is: 

                                       (9.37.a)
Let use x as a running parameter for integra-

tion. According to considerations (2) and (1) we
have:

   and 

   

  where: F is the axial IG force for one point
of the bar  with mass dm2; L - is the mass bar length

The solution is:

                   (9.38)

where: 

a. b.

gx
dF

dm2
----------

Gom1x

x2 r2+( )
2

-----------------------–= =

r Lpc/ 4π( )=

dm2
m2
L

------dx= dF gx
m2
L

------dx=

F gx
m2
L

------ xd

L/2–

L/2

∫ 2 gx
m2
L

------ xd

0

L/2

∫= =

Fx
2Gom2kcor

L
--------------------------- 1

2r2
-------- 2

L2 4r2+
--------------------– 

 =

m2 m1m2=
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kcor - is a correction factor, that will help to
find how the final solution depends on L, for which
the possible range is known.

For the mass point M at distance xo (case c. of
Fig. 9.32) we have:

                    (9.39)

Equating Eq. (9.38) and (9.39) we get expres-
sion in which the parameters  are eliminated
but its analytical solution for xo is difficult. For this
reason we make a function of differences of the
therms

       (9.40)

It is reasonable to expect, that L will be in the
range of Lp or Lpc. For  and , the
solution is

  m                                     (9.40.a)

 The function  falls very sharply for this
value. The plot is shown in Fig. 9.34.
(9.41)

 

For different L in the above mentioned range,
it still exhibits very well defined minimum. The po-
sition of the minimums on the x scale are not very
dependent on the introduced parameter .  For
the defined range of L, the second term does not
influence the xo parameter. Then the binding en-
ergy could be determined by using the simple case
c. of Fig. 9.32, where the ring mass is the intrinsic
neutron mass and the point mass M is the proton
one.

 The estimation has to be in a CL space envi-
ronments, so let trying to use the IG(TP) energy.
Having in mind the relation (9.36) and using the
field expression (9.37), which is valid for this case
we get:

              (9.42)

where:  in fact is some finite value little bit
larger than Lpc (because the IG forces fall quite fast
with the distance).

The factor 2 in front of the integral comes
from the two arm branches (along abcd axes) of the
CL space cell unit. The same factor of 2 has been
used in Eq. 9.13 in §9.7.3 for derivation of CIG fac-
tor.

The binding energy is obtained for initial val-
ue of . Substituting Eq (9.40.a) into (9.42)
and dividing on electron charge q we obtain the
binding energy in eV. 

       (9.42)

where: r is given by Eq. (9.37.a)
The experimentally measured value is

   eV. Consequently, theoretical derived
binding energy is quite close, which is one addi-
tional validation for the correctness of the unveiled
structures of the proton and neutron.

9.12.2 Estimation of the distance between the 
neutrons in the nucleus of Tritii.

We will show approximate method for estima-
tion of the binding energy from which the approxi-
mate value of the neutron separation could be
obtained. The Tritii is a three body system with
configuration shown in Fig. 9.41.

        Fig. 9.41. Nuclear configuration of Tritii

The experimentally determined binding energy
is:

 . 
 According to the analysis in the previous para-

graph, we may regard it as a disintegration energy.
We may assume apriory, that the distance  be-
tween the two neutrons is few times smaller than
the proton length. In the same time, they will be
kept apart by the proximity electrical fields of their
external shells. So we may regard the two neutrons

Fx Gom2 x

xo
2 r2+( )

2
-----------------------

 
 
 

=

Gom2

f xo( )
xo

xo
2 r2+( )

2
-----------------------

2kcor
L

------------- 1
2r2
-------- 2

L2 4r2+
--------------------– 

 –=

L Lp= kcor 1.9246=

xo 0.0747 10–×10=

f xo( )

Fig. 9.40

kcor

EIG TP( ) 2α( )2 CIG
x

x2 r2+( )
2

----------------------- xd

x0

∞

∫=

∞

x xo=

EIG TP( )
2αCIG

xo
2 r2+( )q

--------------------------- 2.145 6×10   (eV)= =

2.22457 6×10

ET 8.4818  MeV=

∆
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as separate systems. Since the electrical field ener-
gy is part of the IG field energy, we may consider
that the total disintegration energy is a sum of two
partial disintegration energies.

The disintegration energy between the proton
and neutron system could be obtained in a similar
way as for deuteron, but considering a ring with
twice larger intrinsic mass. We shall use again the
theoretically derived Eq. (9.42). but multiplied by
factor of two (because two neutrons IG masses are
involved instead of one). So the first partial disin-
tegration energy is:

          (9.43)

The second partial disintegration energy then
is:

The obtained energy of 4.1918 MeV will
serve to determine .  We may simplify the task by
regarding the two neutrons as two mass points at
distance . Let consider the  following possible op-
tions:

(1) - only IG(TP) fields are involved in the sepa-
ration energy

(2) - only IG(CP) fields are involved in the sepa-
ration energy

-(3) - both IG(TP) and IG(CP) fields are involved
The energy expressions for the both types IG

fields are obtained by integration the IG field from
 to infinity and using the relation (9.36). So we

may assign the energy 4.1918 MeV either to (CP)
or (TP) and see what reasonable value of  we may
obtain.

  if IG(CP) energy  - then use  (9.44)

 if IG(TP) energy - then use   (9.45)

The calculated distance in angstroms for both
cases is respectively:

when considering  field:     0.885 A
when considering  field:     0.107 A
The distance 0.888 A is not acceptable, be-

cause it is larger than the proton length. Conse-
quently only the EIG(TP) field is involved in the
balance and the distance is:

.                                         (9.46)

The neutron separation distance is about 16%
of the proton length.

The obtained result shows one important fact:
despite its neutrality the two neutrons are well sep-
arated by the IG(TP) field. This is one additional
confirmation, that the neutron has a proximity E-
field, which is kept locked by the IG(CP) forces,
but is effective at close proximity. This concept is
in agreement with the neutron’s possession of mag-
netic moment. 

9.12.3 Role of the IG(TP) field in the spatial 
order of hadrons in the atomic nucleus

The calculated binding energy of Deuteron is
valid only if the disintegration is done along the
proton long axis and the neutron plane is normal to
this axis. If these two conditions are not taken into
account the calculated energy will be different. The
analysis shows, that the IG(TP) field is only in-
volved. The result for the neutron separation in
Tritii also indicates the involvement of the same
type of field and interactions. Consequently the
IG(TP) fields and the interactions between the CL
space and the internal RL(T) of the FOHSs are re-
sponsible for the spatial order of the neutrons and
protons in the atom. This also means that in any
combination of protons and neutrons, the distance
between the helical structures is always larger than
some critical distance. This preserves these struc-
ture and consequently the stable elementary parti-
cles from destruction (see §6.4.2 and Fig. 6.1,
Chapter 6). This effect is so strong that the hadrons
(proton or neutron) does not approach below the
critical distance even in the process of atomic syn-
thesis in the stars. Otherwise the FOHSs could
crush, which means that enormous flux of hard-
ware neutrino would be observed from the Sun
(while we have a lack of expected neutrino flux
from the Sun).

The IG(TP) fields allows also the protons to
have a limited freedom mainly in the polar atomic
plane. This is important condition for integration of
the atoms into molecules by EB bonds.

E'IG TP( )
4αCIG

xo
2 r2+( )q

--------------------------- 4.29 6×10   (eV)= =

8.4818 4.29– 4.1918 MeV=

∆

∆

∆

∆

CIG

2∆2q
------------ 4.1918 (MeV)=

αCIG

∆2q
------------- 4.1918 (MeV)=

E''IG CP( )
E''IG TP( )

∆ 0.107 10–×10    m=
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