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9.13. Molecules (or fractions of molecules) with 
II-nd type of oscillations.

The two types of oscillations introduced in
§9.5.4.2 are distinguished by the moment of inertia
of the molecule or its structures. For the molecules
with I-st type of oscillations, discussed so far, the
moment of inertia is quite small and has been ne-
glected.

For molecules with a larger moment of in-
ertia, the centrifugal forces could not be ignored.
They contribute to the rotational energy. For homo-
nuclear diatomic molecules this energy is given by
Eq. (9.3). If this forces are smaller than the EB en-
ergy, the molecule possesses a I-st type of vibra-
tions, otherwise it may posses a II-nd type of
vibrations. In the II-nd type of vibrations, the in-
ertial forces work against the quantum qua-
sishrink effect. This may cause a deterioration
of the quantum conditions.

The deteriorated quantum conditions may
affect the process of photon emission (absorption).
The signature of II-nd type of vibrations is not so
apparent  from the optical spectrum. However, it
could be identified by the Photoelectron (PE) spec-
trum. The distinguishing signatures in the PE spec-
trum are the following:
A. For molecules with a I-st type of oscillations: 

(a) The bottom level of the the PE spectrum
is smooth.

(b) The bonding system of H2 (or D2) con-
tributes to a  narrowly spaced and well separated
peaks

(c) the bottom level of H2 (D2) peaks are not
shifted 
B. For molecules with a II-nd type of oscillations: 

- appearance of quite wide peaks with larger
separation

- appearance of H2 (D2) signatures with ele-
vated bottom level of the peaks

- appearance of H2 (D2) signatures overim-
posed on wide peaks

According to BSM analysis, the wide peaks
with larger separation are indicators of deterio-
rated quantum conditions. If examining the wide
peaks with higher resolution PE spectroscopy, it is
apparent that some of them have a fine structure,
others do not. The fine structure is indication that
quantum conditions exists, but they might be from

superimposed PE spectrum of some groups con-
taining H2 (D2) bonding possessing a I-st type of
vibrations. This conclusion has experimental con-
firmation, when interpreting the PE spectrum of
H2S and D2S. Such spectra are provided by Eland,
C. J, (1979). They are shown in Fig. 9.42.

                            Fig. 9.42
 PE spectrum of H2S and D2S (Courtesy by Eland, (1979))

The left part of the spectra is from a neutral
molecule, while the right part - from an ion. The
H2S+ ion is obtained after one of the bonding elec-
trons is lost. The possible molecular structure of
this ion is shown in Fig. 9.43. 

                        Fig. 9.43
        Possible configuration of H2S+ ion. The number
in bracket shows the subharmonic number of the 
quantum orbit. The top quantum orbit could be also 
of (2) subharmonic.  Every quantum orbit contains
a single electron. 

In the shown possible configuration, the
structure of H2S+ molecule appears symmetrical in
respect to the polar axis of sulphur (S element). The
quantum orbits are also symmetrical. The single
electron in the top orbit (between both protons), is
not paired. The effective positive charge may mod-
ulate the surrounding CL space in proximity of the
molecule. In comparison to the neutral H2S, the
electrons are not so well paired and their quantum
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interactions with the CL space should be larger.
Then the wide PE peaks in Fig. 9.22 may corre-
spond to deteriorated quantum conditions, men-
tioned above. The left part of the PE spectrum
contains the familiar PE spectrum of H2 but with a
significantly elevated bottom level. So the left
slope of the left wide peak could be contributed by
I-st type vibrations of H2S with well defined qua-
sishrink effect, while the right slope could be a re-
sult of deteriorated quantum conditions valid for a
II-nd type of vibrations for H2S+ molecule. The
confirmation of this conclusion comes also from
the comparison of the fine structures of the left
wide peak for the H2S and D2S, which is provided
by the bonding electrons. In case of D2S, this struc-
ture is shifted to smaller EIP energies (larger EK en-
ergy). This could be explained by the increased IG
forces from the D2 type of bonding. 

Summary: 
• The I-st type of the molecular vibrations 

could be identified by the PE spectrum
• The complex molecules may contain groups 

with I-st and II type of vibrations
• Only the I-st type of vibrations provides a 

strong discrete optical spectrum

9.14. Information about the molecular configu-
ration, provided by the photoelectron spectrum

The PE spectrum may provide additional in-
formation about the molecular configuration by the
following features:

(a) The energy spacing between the peaks in
the I-st type of vibrations

(b) Angular distribution of the photoelectrons
(a): The energy spacing between the peaks in

I-st type of vibrations is weakly dependent on the
interactions between the bonding and nuclear
quantum orbits. A stronger interaction corresponds
to larger spacing. This is known from the existing
theory of PE spectra. For the BSM model, this fea-
ture may provide a valuable information about the
atomic internuclear separation. It may allow to
identify the possible configuration of different ex-
cited states of the O2 molecule, discussed later in
this Chapter.

(b): The angular distribution of the PE,
known as an “anisotropy parameter” is successful-

ly measured, when the molecules are properly ori-
ented in respect to the analyser magnetic field. The
anisotropy parameter can be evaluated from the ex-
perimental angular distribution of the photoelec-
trons. Such distribution for H2 is shown in Fig. 9.44
(From. Carlson, T.a and Jonas A.E (1971).

                            Fig. 9.44
  Experimental angular distribution of the photo-
electrons from ionization of hydrogen by He I line
(From Carlson et al. (1971)

The anisotropy parameter  is evaluated by
the least square fit to a theoretical equation:

                                 (9.46.A)

where: I - is the relative intensity of PE signal
           - angle of distribution

The anisotropy parameter is measured for
number of molecules in different states and it var-
ies between 1.8 (for H2) and some minus values for
some molecules. It also has different value for dif-
ferent states of one and a same molecule.  When
plotting the function  we obtain a sense of the
position of the plane of the bonding quantum orbit
in respect to the molecular orientation along its
vector of velocity. In case of H2 molecule, the pa-
rameter  is a largest one. Consequently, the pa-
rameter  is a signature of the orbital plane
orientation in respect to the molecular axis of
the rotational motion. For two different states of
N2 it obtains value of 0.6 and 0.65. 

If the bonding orbits are more than one and
with good rotational symmetry, then the parameter

 is low. For the inert gases the parameter  is not
related with the bonding orbits but with the photo-
electrons from the internal completed layer of pro-
tons. For this reason the  parameter is informative
about the shape of the nuclei of these atoms. For
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example, the shape of the Ar nucleus is closer to a
sphere, but the nucleus of Kr or Xe is not. Fig.  9.39
shows plots of  parameter for H2 and for some in-
ert gases.

                     Fig. 9.45
Angular distribution of photoelectrons from 
PE spectra and corresponding  para-meter
for different gazes

9.15. IG energy balance for system of diatomic 
homonuclear molecule

9.15.1 IG Energy of a bonding system 
In the presented examples of H2 and D2 mol-

ecules, the IG energy balance was satisfied for the
first harmonic quantum orbit. Let considering the
ortho-I state of H2, whose IG energy balance is de-
scribed by Eq. (9.23). If using Lq(n) instead of
Lq(1), where , the Eq. (9.23) is unbalanced
quite a bit. The imbalance  (eV) for quantum
orbits with different subharmonic number n is
shown in Table: 9.5

                                                            Table 9.5
===========================================
subharmonic number (n)             [A]        [eV]   
-------------------------------------------------------------------------
     1                                   Lq(1)                  6.27
     2                                   Lq(2)                  1.6326E6
     3                                   Lq(3)                  3.166E6
     4                                   Lq(4)                  4.487E6
-------------------------------------------------------------------------
where: 

 
We see that for larger subharmonics the IG

balance of the system is disturbed quite a lot. If the
obtained imbalance, however, is compensated by a
proper IG field between two atoms, a new balance
could be obtained, valid for the whole system.  In
such case, the bonding energy would be  expressed

by the same equation (9.23) but instead of length
 we will have  where n - is the subhar-

monic number. . In this point, however, one
question arises: Do bond systems which are similar
but with quantum orbits of higher subharmonic
number have the same  dependence of vibrational
number? For this reason we must consider two cas-
es:

Case (A). Assumption that the term
 is one and a same for quantum orbits

with different subharmonic number
In this case, the total momentum energy  as a

function of the quantum number  is:

  (eV)     (9.47)

      (9.47.a)
where;  is the momentary energy of

the bonding system of protons (corresponding to
H2 ortho-I type system),  - the locus dis-
tance from the central point of Hippoped curve, 
- is the vibrational level (referenced to the equilib-
rium distance), 

For bonding system of deuterons, the mo-
mentum bonding energy is equivalent to the total
energy of D2 molecule given by Eq. (9.27). Apply-
ing for subharmonic numbers of n, we obtain a mo-
mentary bonding energy of deuterons, denoted as
BD2.

(eV)       (9.49)
       

   (9.49.a)

There are two special points of the vibrational
curve defining two special values for the momen-
tary bonding energy:

(a) the equilibrium point defines a momen-
tary bonding energy at equilibrium ( ).

(b) the dissociation point defines a momen-
tary bonding energy at dissociation limit (for
some value of )

Note:  has a finite value. This means the
vibrational curve has a limit number of vibrational
numbers according to BSM models. From the BSM
point of view, the large quantum numbers in QM
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model are results of deformations of the shape of
the quantum orbits as discussed in section 9.5.7.4.

The single valence bonding system between
two atoms in the molecule could be regarded as
bondings of H2 or D2 system. In fact D2 system
bonding is more typical as seen from the Atlas of
the Atomic Nuclear Structure (ANS). Therefore,
the Eq. (9.47) is valid for a bonding system of pro-
tons while the Eq. (9.49) - for a bonding system of
Deuterons.

Case (B). Assumption that the term
 is dependent on the quantum number of

the orbit
Larger subharmonic numbers means smaller

length of the particular quantum orbit. If consider-
ing that IG energy of heavier than H2 and D2 mol-
ecule causes a larger bending of the vibrational
ladder, then the above term may have some kind of
inverse proportional dependence on n. If assuming
that this is correct, the same rule should be valid
also for the  Lq(1). The correct dependence cold be
determined only by studying the vibrational prop-
erties of diatomic molecules for which photoelec-
tron and optical spectra are available. Some study
of this problem by using the photoelectron and op-
tical spectra of O2 molecule is presented separately
as BSM_Appendix9_1.

9.15.2 Energy balance in diatomic molecules
The momentary bonding energy could be

compensated by a proper IG potential between the
atomic nuclei involved in the molecule. For a stable
connection of atoms into a molecule, the average
IG energy of the total system should be in balance.
The average IG energy means that the system may
vibrate around the momentary balance equilibrium
state in a similar way as the H2 and D2 molecules.
Then the IG energy may be regarded as comprised
of two components: DC (constant component, like
“direct current”) and AC (alternative component).
Such system includes:

- the CL space occupied by the volume of the
integrated Bohr surfaces of both atoms and bond-
ing system.

- the elementary particles of both atoms
(comprised of helical structures with their internal
RL(T) lattices).

- the bonding system comprised of one or
more  pair of protons( deuterons).

The energy interactions diagram of a simple
molecule of two atoms connected by electronic
bonds is schematically illustrated in Fig. (9.46). It
is assumed that the bonding system is comprised of
deuterons (a more typical case).

                    Fig. 9.46
Energy interaction diagram of simple diatomic molecule

The IG(TP) of the atomic nucleus provides a
charge definition (by RL(T) of the FOHSs), while
the IG(CP) provides a charge unity control for all
proton charges. The bonding system, shown in Fig.
9.46 contains two deuteron’s pair. In order to be
balanced for particular quantum orbits from the
possible quantum orbit set, it needs some amount
of external IG energy of IG(CP) type (IG energy
between the two atoms). Such type of energy
should be provided by the molecular system, but it
should be balanced by IG(TP) energy, in order the
whole system (including the CL space) to be
brought to an average IG energy balance. The mo-
mentary energy of the molecule may oscillate
around the equilibrium point, so the total IG energy
should have a DC and AC components as in the
case of H2 (D2) molecule. Then the energy balance
conditions could be formulated as Electronic
Bonding (EB) conditions:

EB conditions: At the equilibrium point of
vibrations, the momentary imbalance of the to-
tal AC type IG energy of the molecule should be
equal to zero. 

The bonding system imbalance involves
IG(CP) energy, so the necessary interaction should
be of this type, as shown in Fig. 9.46. It is difficult
to estimate directly the IG(TP) energy supplied by
both atoms, but it could be estimated by the total

α4π υm υ–( )2
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balance of the system. This energy is subtracted
from the total system energy, so it has to be com-
pensated. The possible compensation could come
from IG attractions involving IG(TP) fields of both
nuclei. If the internuclear distance was known, the
IG(TP) forces could be estimated by using the
known value of CIG factor and the number of had-
rons in the nuclei. Then the IG energy could be es-
timated as a work for separation of the nuclei from
the internuclear distance to infinity. Practically, the
condition for infinity in CL space is obtainable at
distance of few nuclear lengths (due to a fast drop
of IG forces with the distance in CL space). More
useful, however, appears the inverse task:  an esti-
mation of the internuclear distance, when the ener-
gy balance is determined. This parameter could be
verified with the observational data, so it may serve
as a validation parameter for the unveiled molecu-
lar configuration.

It is reasonable to consider that the propor-
tionality between the nuclear atomic mass and the
atomic mass unit (valid for the Newtonian mass) is
preserved also for the intrinsic masses of the nuclei.
For approximate calculations, we may accept two
simplification:

- neglecting the difference between the mass-
es of neutron and proton and using the proton mass
only (in fact they both contain one and a same in-
trinsic matter) 

- neglecting the mass deficiency (nuclear
binding energy) especially for atoms with a low Z
number.

For neutral molecules, when estimating the
IG(TP) forces between the two nuclei at a distance
rn, we should exclude the protons involved in the
bonding system, as their forces and energies are di-
rectly involved in the bonding system balance.
Having in mind that the factor CIG is normalized to
the intrinsic proton mass, the IG force between two
identical nuclei could be expressed as:

                                    (9.51)

where: CIG - is the intrinsic factor, defined by Eq.
(9.13.a) and expressed by Eq. (9.17), A - is the
atomic mass of the participating atom, p - is the
number of protons per atom, involved in the bond-
ing system

In Eq. (9.51), only the protons are excluded
from the  attractive IG forces between the two nu-
cleus. (In fact the distance between neutrons over
proton saddle are closer than the internuclear dis-
tance but IG field between them could be partly af-
fected by the proximity fields of the protons). This
assumption  leads to more reasonable final results,
as shown in §9.16.2, tested especially for the Oxy-
gen molecule.

Having in mind that  and
integrating Eq. (9.32) on a distance r, we get:

      (9.52)

The factor 2 in front of the integral takes into
account the two branches of aligned prisms along
abcd axes, involved in one cell unit of CL space. 

For a momentary AC type of balance at equi-
librium distance, the  energy given by Eq.
(9.52) should be equal to the energy  mul-
tiplied by the number of connected protons (per
one atom) involved in the binding system. Devia-
tions of internuclear distance from the equilibrium
value of rn will make a system imbalance, which is
characterised by quantum vibrational energy lev-
els. For a bonding system of protons, this deviation
is given by Eq. (9.47), while for deuterons - by Eq.
(9.49). The total IG(TP) energy necessary for mo-
mentary balancing of the bonding system is:

                        (9.53)

where  is the change of the internuclear
distance due to the different vibrational quantum
numbers. 

For case of D2 bonding, it is obtainable by
differentiation of the internuclear distance given by
Eq. (9.49.a) on vibrational number . Having in
mind that  we obtain:

                            (9.53.a)

If equating the energy of  in (eV) with
energy  we get AC balance condition only
for . For  the imbalance energy is the vi-
brational energy level. Therefore, the vibrational
energy levels (for D2) are equal to the difference
between the energies given by Eq. (9.49) and Eq.
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(9.53) for different integer values of . We can
denote them as .

                         (9.54)

The energy balance , defined by Eq.
(9.47) is for one valence connection. The diatomic
molecules (or groups) usually do not have more
than three valence connections. So for more than
one valence connection we may express the bal-
ance energy by simply multiplying the energy term
BD2 by the valence factor p. The final equation for
the vibrational levels in diatomic homonuclear
molecule obtains a  form:

    (9.55)

where: A - is the atomic mass in atomic mass
units (for one atom), p - is the number of protons in-
volved in the bonding system (per one atom), n - is
the subharmonic quantum number of the quantum
orbit, rn - is the internuclear distance at the equilib-
rium,  - is the change of the internuclear distance
in function of vibrational quantum number 

The participation of Lq(n) parameter in Eq.
(9.55) does not exclude a serially connected quan-
tum loops. In the following analysis, however, only
single quantum loops are discussed.

The application of (9.55) is limited for dia-
tomic mainly  homonuclear molecules with elec-
tronic bonding system. Such molecules are
possible for the elements from 15, 16, and 17 verti-
cal group of the Periodic table (but possible appli-
cations for other groups are not excluded). 

If applying the equation for , we see that
the  energy is in order of few eV. In order to get
equilibrium balance, the internuclear distance for
O2 molecule, for example,  has to be in order of
0.12 nm. This of cause is not reasonable for any
molecule due to the finite nuclear size of the atomic
nucleus (defined by the finite size of the proton and
neutron). Consequently: the case of  is not
valid for any molecule, but H2 and D2 only. This
facilitates the task for determination of the config-
urations of molecules of heavier atoms by exclud-
ing the bonding orbit Lq(1).

The obtained Eq. (9.55) is of great impor-
tance for BSM. It provides the opportunity to find
the real structure of some simple diatomic mole-

cules, if the optical and PE spectra are available. By
careful analysis of such spectra, the parameters n,

, and rn could be determined. The analysis could
be simultaneously assisted by finding the proper
spatial configuration, working with the known
three dimensional shape of the proton, (neutron),
and the set of quantum orbits, defined with their
shape and dimensions. The  parameter is quite
small in comparison to rn, as in the H2 and D2 mol-
ecule. Therefore, we can use the well defined di-
mensions of the quantum orbit in free CL space.

Such type of analysis is applied in the next
paragraph for the Oxygen molecule and its possible
states.

Note: The vibrational levels calculated by
Eq. (9.55) are approximate due to a simplification
that the IG mass of the nucleus is located in a point.
However, the nucleus of every atom has a finite di-
mensions according to BSM models, so  this is a
source for error. Another smaller source for error
could be the ignored spin-orbit interactions. For
this reason the calculated distances could be used
only for determination of molecular configuration.

From Eq. (9.55) we may derive a direct ex-
pression for the internuclear distance for a homo-
nuclear diatomic molecule. Having in mind that the
change of the internuclear distance for vibrating
molecule is intrinsically small, we may use the dis-
tance at equilibrium at which  and the mo-
mentary energy is zero  Then solving
Eq. (9.55) for  we obtain:

                       (9.56)

Eq.(9.56) could be easily modified for heter-
onuclear molecules.

9.15.3. Electronic bonds with quantum orbits 
formed by serially connected quantum loops.

We have considered so far that the trace of
any quantum orbit is formed by a single quantum
loop. The condition of quantum orbit, however, is
satisfied for more than one quantum loops, con-
nected serially. This was discussed for Hydrogen in
§7.4 and the possible quantum orbits in such case
were given in Table 7.1. There are not theoretical
restrictions such orbit to exists in bonding systems
between atoms in molecule. If the quantum orbit,

υ
∆E

∆E
2αCIG A p–( )2

rn ∆r[ ]±( )2
------------------------------------- BD2–=

BD2

∆E p n υ, ,( )
2αCIG A p–( )2

rn ∆r n υ,( )[ ]±[ ]2
-------------------------------------------- pBD2 n υ,( )–=

∆r
υ

n 1=
BD2

n 1=

∆

∆r

υ 0=
∆E p n υ, ,( ) 0=

rn

rn n A p, ,( ) A p–( )
2αCIG
pEB n( )
------------------=
Copyright © 2001, by S. Sarg                                                                                                                                                                 9-52



BSM  Chapter 9.   Molecules                                                                                      Revised: 11 Nov 2002
for example, contains two quantum loops of third
harmonic, it will still have kinetic energy of

 per electron, but its linear di-
mension will be twice the linear dimension of third
subharmonic orbit. Consequently quantum orbits
of serially connected quantum loops increases the
set of possible lengths of quantum orbits. When
this set is combined with the limited angular free-
dom of polar bonded protons,  additional options
for total energy balance for connected in molecule
atoms are obtained. The derived equations for the
bonding length and vibrational levels are easier
modifiable for this option. For the bonding energy
expression the serially connected loops will affect
the kinetic energy in Eq. (9.49) and the internuclear
distance in Eq. (9.49.a). For the total energy bal-
ance of the molecule, the serially connected loops
will affect  and  in Eq. (9.53).

The derived equations are used in
BSM_Appendix9_1 for analysis of different states
of the O2 molecules in order to obtain their config-
urations.

Summary:
• The vibrational energy levels for diatomic 

molecules could be approximately estimated 
by Eq. (9.55). Using the simplification that 
IG mass is in a point and ignoring QM spin-
orbital interaction, it may provide only 
approximate value. 

• Diatomic molecules or groups with atomic 
mass larger than 4 could not have a bonding 
orbit of first harmonic.

• By simultaneous cross analysis of the PE and 
optical spectrum with the help of Eq. (9.55) 
the real structure of the diatomic molecules 
and their different states could be obtained. 

9.16. Oxygen molecule and its different states.
The analysis of different states of O2 mole-

cule in order to obtain the corresponding molecular
configurations is provided in BSM_Appendix9_1.
For this purpose PE and Optical spectra of O2 mol-
ecule are used. Here only some final results are
shown.

Fig. (9.48) shows the PE spectrum provided
by K. Kimura et al. (1981).

Fig. 9.48. PE spectrum of oxygen molecule excited 
by He I radiation (Turner et all., courtesy of K. Kimura
 et al., (1981))

According to BSM analysis, the different
bands of PE spectrum correspond to different mo-
lecular configurations or states. They are denoted
by the alphabets (A), (B), (C), (D), (E) states (BSM
annotation), put in the top of the figure. Note that
the (C) and (D) states are partly overlapped. The
possible configurations of the {D} and {A} states
are shown in Fig. (9.50).

                      Fig. (9.50)
Possible configurations of O2 molecule in {D}

and {A} states (by BSM)

Fig. 9.52 shows the possible configuration of
{E} state of O2 molecule. Eq. (9.55) is not directly
applicable for this state without modifications, be-
cause the quantum orbits are not aligned with the
common internuclear axis.

13.6/32 1.511  (eV)=

rn ∆rn
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                      Fig.9.52
A possible configuration of (E) state of O2 molecule

The calculated values of rn (rounded) by Eq.
(9.56) and those matching the spatial configuration
by using a drawing method, are  given in Table 9.6. 

Calculated (rounded) values for rn          Table 9.6
===========================================
 rn                       Lq(2)             Lq(2)            Lq(2x)           Lq(3)    
 (A)                (1 bond)       (2 bonds)        (2 bonds)      (2 bonds)
-------------------------------------------------------------------------
by Eq. (9.56)    2.57 A          1.695 A                             1.217 A 
by drawing       2 A               1.7 A             1.74 A         1.25 A  
-------------------------------------------------------------------------
state                  (B), (C)          (D)              (E)              (A)
-------------------------------------------------------------------------

The calculated distances could not be consid-
ered accurate as some elaborate methods of Quan-
tum Mechanics. They are shown only for
identification of the possible molecular configura-
tion.

9.16.8 (OH)- ion.
The possible configuration of (OH)- ion is

shown in Fig. 9.62 It is assumed, that the plane of
the two bonding orbits are parallel, so they exhibit
a maximal QM spin interaction. In such case the
polar angular position of the valence protons is in-
fluenced by the QM spins of the two orbits even for
bonding orbits with different subharmonic number.

 

                          Fig. 9.62
     A possible configuration of (OH)- Every bonding or-

bit contains two electron with opposite QM spin. (the bond-
ing orbits are  shown in the drawing plane for simplicity,
although they are perpendicular to the drawing).but rotated

       
 The shown configuration is characterized, al-

so, by the following feature: The planes of the three
sets of orbits: the He nucleus orbits, the orbits of
GBclp protons, and the bonding orbits are mutually
orthogonal. The described features might be impor-
tant factor for the stability of OH- ion.

9.17 NH3 molecule
The Nitrogen atom has 3 free valence protons

(deuterons) and two equatorial EB protons in its
external shell. Two of the three valence protons are
bonded to one pole and another one to the second
pole. In NH3 molecule every valence proton of N is
connected to one hydrogen atom (proton). The
bonding orbits are perhaps of second subharmonic
number. The configuration is difficult to be shown
by small number of views. The study of the optical
spectrum of NH3 indicates two minima of the vi-
brational curve, corresponding to lower energy and
higher energy states. The two possible states ac-
cording to BSM have the following configuration:

A. Lower energy state:
This states may correspond to a large polar

angles of the three deuterons as in the water mole-
cule in a gas phase. The connected protons are
aligned by the valence deuterons.

B. Higher energy state:
This states may correspond to smaller polar

angles of the polar bonded deuterons of nitrogen at-
om. The positions of the bonding quantum orbits in
this state may play a stabilizing role in the follow-
ing way. Their long axes become parallel to the po-
lar axis of the nitrogen atom. In such configuration
their magnetic fields could be coupled with the
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magnetic fields of the orbits of the two equatorial
EB bonded deuterons.  In such condition, the mol-
ecule obtains four symmetrically aligned quantum
orbits in respect to the polar axis. The QM spin in-
teraction in such case should be quite large. This
may provide a stable molecular configuration.

9.18 Molecules with folded vibrational-rota-
tional spectra

From the previous paragraph we see, that the
valence protons of the nitrogen atom is asymmetri-
cal in respect to the polar axis. When participating
in molecular groups it propagates its asymmetrical
feature to them. For molecules and groups with a
large asymmetry, the bending centrifugal forces
become so large that the optical spectrum is addi-
tionally distorted. The large asymmetry between P
and R branches causes a folding of R branch. A
typical example of such molecule is HCN. 

The four protons (deuterons) in the Carbon
atom posses a polar axial symmetry but rotated at
90 deg. It is apparent that the obtained bonding
connection  is quite asymmetrical. The single
valence bond between the carbon and hydrogen ad-
ditionally increases the asymmetrical properties of
the molecule.

A possible configuration of HCN is shown in
Fig. 9.63. 

Fig. 9.63. A possible configuration of HCN molecule

Fig. 9.64 shows a stretched P branch and
folded R branch of one of the optical transitions of
HCN molecule. The folded R branch of HCN mol-
ecule evidently is from the CN bondings, caused by
the asymmetrical bending forces around the com-
mon axis.

Fig. 9.64. Absorption band of  transi-
tion of HCN molecule (courtesy of P. F. Bernath, (1995)

The first contributing factor is the asymmetry
of the  bonding system in respect to the molec-
ular axis of rotation and the second one is the asym-
metrical position of the proton, bonded to the
carbon.

For explanation of the folded R branch we
may use the following simple example of a three
leg chair on a horizontal plane. Let the top of the
chair is tipped by a horizontal force  causing a rota-
tion  around its vertical axis. There will be two dif-
ferent moments of the motion: when two legs are in
contact with the horizontal plane and when only
one leg is in contact. Now suppose, that the top of
the chair is loaded with mass that is displaced from
the central axis of rotation. Let also consider, that
the horizontal plane is partly soft. We arrive to a
similar conditions as for the bonding connection
and IG attractive forces between C and N nuclei.
The motion analysis of the example with three leg
chair leads to the following conclusion:

The folding of the R branch is a result of
changed momentary energy balance for one of
the electrical bonds of CN group due to a redis-
tribution of the IG forces.

9.19 CO2 molecule 
The carbon atom in CO2 molecule is in the

middle, so this molecule is highly  symmetrical.
For calculation of the internuclear distance, Eq.
(9.56) could be used with small modification. 

- considering CO system as a single molecule
- replacing the factor  with the product

, where: A1 is the carbon atomic
mass A2 is the oxygen atomic mass. The factor 2 in
front of p for C atom takes into account the exclu-

C N≡

Ã 1A'' X̃  1Σ+–

C N≡

A p–( )
A1 p–( ) A2 p–( )[ ]1/2
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sion of 4 protons, as participating in the bonding
system. 

The obtained internuclear distance for CO
group, according to the above consideration is
about 1.284 A (angstroms) for a second subhar-
monic orbit. One view of the obtained configura-
tion is shown in Fig. 9.65.  

  Fig. 9.65 Single view of CO2 molecule Note: The
two proton pairs in the left side of the drawing with two bond-
ing orbits are similar as these in the right side but rotated at
90 deg. So only the projection of one of two bonding orbits is
visible in the left side

If the view is rotated at 90 deg around xx axis,
the left hand side will be interchanged with the
right hand one. The molecule is twisted due to the
proton twisting, but this is not shown in the draw-
ing.

CO2 molecule exhibits both types of above
discussed vibrations contributing respectively to
the following two types of spectra: 

Case (a) Pure R and P branches only, the mid-
dle of the gap between them is at 2350 cm-1

Case (b) R and P branch with very strong Q
branch at 664 cm-1.

Case (a) is related with linear vibrations,
while case (b) with quasirotational motion. The lat-
ter is a result of molecular bending. Such condi-
tions are possible due to the large length to width
ratio of the molecular dimensions (a similar reason
for Q branches in H2 ortho-II molecule, see §9.9.4)
The QM model for case (a) is known as antisym-
metric stretch (top), and for case (b) as asymmetric
stretch (bend). Their spectrum are shown respec-
tively in Fig. 9.66 and Fig. 9.67.

                              Fig. 9.66
Antisymmetric stretching fundamental band of CO2
  

                             Fig.9.67
           Bending fundamental band of CO2

9.20. Water molecule
Figure 9.68 shows the configuration of the

water molecule in one projection. The equatorial
GBclp bonded deuteron are not shown in this pro-
jection.

                  Fig. 9.68
              Water  molecule

The configuration of H2O shows a large an-
gular freedom of the oxygen protons.  In the solid
phase this angle is self adjusted in order to match
the convenient crystal configuration.
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