
 
 
 
 
 

Atoms connected in molecules by elec-
tronic bonds 

Selected material from BSM thesis: 
(www.helical-structure.org)

Note: The numbers of the figures and equations shown in

square brackets match the numbers in BSM thesis. 

Short introduction: The known physical laws and
postulates are obtainable if the classical empty
space is filled by unique material structure. A mod-
el called a Cosmic Lattice (CL) is suggested ac-
cording to which the vacuum possesses an
underlying structure built of two types super dens
sub-elementary particles arranged in nodes. These
particles called twisted prisms are from two differ-
ent intrinsic matter substances. In empty space the
prisms of same type are attracted by forces inverse
proportional to the cub of the distance. The nodes
are with flexible geometry and possess energy
wells. The CL space exhibits quantum features and
creates conditions for fields: gravitational, electri-
cal and magnetic. It is also responsible for the con-
stant light velocity, the relativistic effects and the
inertia. The elementary particles are complex heli-
cal structures built of twisted prisms in a unique
process of crystallisation. The protons and neutrons
in the atomic nuclei follow a strict order. The sug-
gested physical models are successfully applied for
explanation of dozens of physical effects and phe-
nomena in a large range from micro to macro Cos-
mos. 

The unveiled structure of the electron is
shown in Fig. 1. It is a 3 body oscillation structure
consisting of central core (from a right hind twisted
prisms) internal helical structure (left hand twisted
prisms) and external helical structure (right hand
twisted prisms). The both helical structures pos-
sesses internal lattices from same type of prisms,
that are more dense of the CL space. The lattice of
most external structure modulates the CL nodes
and create the electrical field of the electron. The
internal core and helical structures are centred by
the IG field and oscillates in conditions of ideal
bearing.

The confined screw like motion of the oscil-
lating electron in Cosmic Lattice (CL) space is
characterized by strong quantum interactions with
the oscillating CL nodes. They are related with
phase matches of the involved cycles and the con-
ditions of integer number of Compton wavelengths
for boundary conditions of the induced magnetic
field from the rotating electron. So the strong quan-
tum effects appear at particular velocities corre-
sponding to the energy set:  13.6 eV, 3.4 eV, 1.51
eV, 0.85 eV and so on.

The characteristic parameters of dynamical
interactions of oscillating electron are shown in Ta-
ble 1.                                                                          

                                                  Table 1
------------------------------------------------------------------------
No    E  (eV)     Vax           Vt           rmb               lql          Lq  (A)
-------------------------------------------------------------------------
         
         
         
         
         
-------------------------------------------------------------------------
where: E - is the electron energy, Vax - is the axial
velocity, Vt - is the tangential velocity of the rotat-
ing electron structure, rmb - is the value of the
boundary electron magnetic radius in plane normal
to Vax vector, c - is a light velocity, Rc - is the
Compton radius, ao - is the Bohr radius, lql - is the
trace length of motion in closed loop (single quan-
tum loop), Lq  - is the length size of the quantum
loop as Hippoped curve with parameter .

Fig 2 shows the spatial geometry of the
Deuteron, where: p - is the proton and  n - is the
neutron. The neutron is centred over the proton
saddle and kept by  the Intrinsic Gravitation (IG)
field and the proximity electrical fields of the neu-
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Oscillating
electron

1 13.6 αc c ~Rc 2πa0 1.3626
2 3.4 αc/2 c/2 2Rc 2πa0/2 0.6813
3 1.51 αc/3 c/3 3Rc 2πa0/3 0.4542
4 0.85 αc/4 c/4 4Rc 2πa0/4 0.3406
5 0.544 αc/5 c/5 5Rc 2πa0/5 0.2725

a 3=



tron and proton. In such conditions the neutron is
kept stable (it could not be unfolded and converted
to a proton). 

Fig. 3 illustrates the protons and neutrons
arrangement in the nucleus of He. In such close dis-
tance the internal lattices of the proton’s helical
structures are kept by IG forces that are inverse
proportional to the cube of the distance. The He nu-
cleus is the most compact atomic structure. So its
influence on the CL space parameters is strongest.
As a result the helium nucleus possesses the largest
binding energy between the involved protons and
neutrons..

When taking into account the two features of the
proton: a finite geometrical size and the distributed
proximity electrical field it is evident that the Cou-
lomb law is valid down to some limit, defined by
the finite size of the proton structure. This is veri-
fied by the model of Balmer series in Hydrogen
presented in Chapter 7.  The idealized shape of
Balmer series orbit is shown in Fig. [7.7].  

Fig. [7.7]. Idealized shape of Balmer series orbit. Rc - is the

Compton radius, rqm - is a magnetic radius of electron at sub-

optimal quantum velocity. The compton wavelength  is not

in scale for drawing clarity.

Fig. 4 shows the  patterns used for the proton,
deuteron, tritii and helium, while the right part
shows the most common shapes of the quantum or-
bits. The dimensions of the quantum orbits and the
proton and neutron are given in one and a same
scale.

 Polar axis can be identified in any atomic nu-
cleus. It is defined by the long symmetrical axis of
one or more He nuclei in the middle of atomic nu-
cleus. The atomic nuclei posses also twisting fea-
tures due to the proton twisting   (not shown in the
drawings).  In the Atlas of ANS additional symbol-
ic notations are used for the unveiled types of pro-
tons bonding and pairing in which IG (Intrinsic
Gravitation) and EM fields are involved. It is evi-
dent from the nuclear structure that the positions of
the electron orbits are strictly determined by the
protons positions with their proximity electrical
fields and the conditions of quantum orbits provid-
ed by Table 1. So the electron orbits are not
shown in the Atlas of ANS but their positions
are easily identifiable. Having in mind the above
consideration the well defined orbital positions
are characterized by the same first ionization
potential known experimentally and embedded
in the Quantum mechanical models. 

3. Electronic bonds between atoms in molecules
It is evident that the BSM model of the atom

allows identification of the orbital planes and
chemical bond orientation of the atoms in the
chemical compounds. Additionally the quantum
mechanical spin of the electron circling in orbit
around the proton is also identifiable. The proton
envelope is twisted torus, so it possess a helicity. If
the electron in the orbit shown in Fig. 2 circling in
two different direction in respect to the proton heli-
city, the two type of energy interactions are charac-
terized by slightly different energies. This
corresponds to line doubling in the atomic spectra.

Fig. 2. Deuteron with
electron in Balmer series
according to BSM physi-
cal model

Fig. 3. Helium nucleus
according to BSM phy-
sical model
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The intrinsic conditions of the quantum orbits
defined by the two proper frequencies of the elec-
tron and CL node dynamics are valid also for the
bonding electrons in molecules. Fig. [(19.2)]
shows the Structure of the most simple H2 mole-
cule identified as ortho-I state.

                              Fig. [9.12]
                    Structure of H2 - ortho-I state molecule

    Lp  - is a proton length
Lq(1) is a long side of first harmonic quantum orbit
rn - is the distance between the Hydrogen atoms
r - distance between the electron and the proton 
     core in the circular section (most external) of 
      the orbital trace

Note: The quantum orbit quasiplane  does not
       coincide with the quasiplanes of the protons.  It
       passes through the locuses of the proton clubs.

Fig.  [(9.15)] shows the vibrational diagram
of H2 - ortho-I state molecule and the relation be-
tween the optical and photoelectron spectrum

                                        Fig. [9.15]
Vibrational diagram of H2 ortho-I molecule

E - is a momentary energy scale 
 - is a photon energy scale (not starting from zero)

 and  optical vibrational transition
bands from Lyman system

rne - is an internuclear distance at equilibrium point
 and  are the ranges of displacement

ESYS - is a system energy at point B, before dissocia-
tion

EDIS - is a dissociation energy
EVIP - is a Vertical Ionization Potential
EIP - is a PE spectrum parameter (Ionization Potential) 
EK - is a PE spectrum parameter (“electron kinetic en-

ergy”)
EBEP - is a bound energy at equilibrium point
E‘BEP - is a “bound energy” estimated by PE spectrum
The numbering 1 to 3 and 0 is used by BSM

in order to match the accepted by QM numbering
of optical vibrational bands  and ..
The parameter  in Eq. (9.23) corresponds to the
same vibrational levels but referenced to the equi-
librium internuclear distance (corresponding to the
bottom of the vibrational curve).

The analysis of the simple H2 molecule al-
lows to unveil the vibrational model of simple dia-
tomic molecule in which the hidden so far Intrinsic
Gravitation participates in the total energy balance
of the system, including the energy embedded in
the electrical charge of the participated electrons
and protons. The parameter EBEP is determined by
cross-analysis of the optical and photoionization
spectra. The obtained equation for the vibrational
levels of H2 ortho-I molecule based on a total in-
trinsic energy balance is:

 [(9.17)]

  - intrinsic factor 

where: EBEP [eV] - boundary energy at equilibrium
point , h - Planck constant,  - Compton frequen-
cy,  - fine structure constant, LP - proton length
(of the Hippoped curve), Lq - quantum orbit length
as Hippoped curve (see Table 1), G0 - intrinsic
gravitational constant, mno - intrinsic neutron mass
(the proton have the same mass plus the mass-ener-
gy equivalence of the electrical charge it possess-
ing.)

The CIG factor is cross-validated by calcula-
tion of the binding energy between the neutron and
proton in deuteron (Chapter 9) and by the compar-
ison between the calculated vibrational levels by
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BSM models and the experimentally obtained
spectra for some molecules.

Fig. [9.24] shows the energy levels Ev , calcu-
lated by Eq. [(9.23)] and vibrational levels of the

optical transitions E(0-ν’’) and E(1-ν’’) according
to Dabrowski (1984). The fractional error of calcu-
lated levels Ev, from the optical data is within +/-
0.035%.

                    The calculated vibrational levels shown
in Fig. 9.24 corresponds to the measured optical
spectrum from the system , known
also as a Lyman system. (Accurate experimental
measurements of this system are provided by I.
Dabrowsky, Can. J. Phys., 62, 1639 (1984)Cook G.
K. and Ogawa M., Can J. Phys., 43, 256 (1965)
(1984)). The parameter   is deter-
mined from the condition of minimum difference
between the measured and calculated  levels. It is
used for accurate calculation of CIG factor in Eq.
[9.17].

Following similar analysis and based on the
successful results from the analysis if H2 molecule
an  analytical expression for vibrational levels for
heavier simple diatomic molecules is obtained.

  [9.23

                                                  [9.26]

where:  - is the IG energy spent for creating
the positive unit charge of the proton, EK - is the ki-
netic energy of the electron,  - is a quantum vibra-
tional number referenced to the equilibrium point
(see Fig. [9.15]).

.

Fig. [9.42]. PE spectrum of oxygen molecule excited by
He I radiation (Turner et all., courtesy of K. Kimura
et al., (1981))

It is found that the first harmonics quantum
orbit Lq(1) is possible only for H2 and D2 mole-
cules. For diatomic molecules from heavier atoms
the intrinsic balance is obtained only for larger sub-
harmonics of the rotating and oscillating electron
(corresponding to lower quantum velocities of the
electron), or Lq(2), Lq(3), Lq(4) and so on. Based on
derived Eq. [9.23] and the data from optical and
photoionization spectra the possible configurations
of simple diatomic molecules are identified. Fig.
[9.42] shows the photoelectron spectra of O2 mol-
ecule. They corresponds to different internuclear
distances. Table 9.6 shows the calculated antinu-
clear distances for different quantum orbits Lq us-
ing Eq. [9.42]  and the estimated distances by the

responding to two QM spin values. The calculated levels are shown by step line, while the optical transitions by diamonds.  
Fig. [9.24]. Energy levels Ev , calculated by Eq. (9.23) and vibrational levels of the optical transitions E(0-ν’’) and E(1-ν’’), co
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drawing method, using the known dimensions of
the proton (neutron) and the quantum orbit from
the possible set of quantum orbits. The proton and
neutron dimensions are estimated by cross-analy-
sis. The proton envelope volume is involved in the
theoretical estimation of the background tempera-
ture of CL space (2.72 K) (Chapter 5) and in the
proton mass balance analysis (Chapter 6). The pro-
ton core length is cross-validated by the Balmer se-
ries model and vibrational models of the molecules
(Chapter 9). Table 9.6 shows also the  correspond-
ing possible state denoted by capital letters in
bracket (BSM notation).

Calculated by Eq. (9.55) values for rn for               Table 9.6
O2 states. The values are given in Angstroms (A).  
===========================================
 rn                     Lq(2)             Lq(2)             L q(2x)            Lq(3)    
 (A)               (1 bond)       (2 bonds)       (2 bonds)    (2 bonds)
-------------------------------------------------------------------------
calculated          2.57 A          1.698 A                             1.219 A 
match drawing    2 A             1.7 A            1.74 A          1.25 A  
-------------------------------------------------------------------------
possible state  {B}, {C}          {D}              {E}              {A}
-----------------------------------------------------------------------

The considered electronic type of chemical
bonds allows vibrational type motion of the in-
volved nucleus. The rotational components in the
vibrational rotational spectra are result of distortion
of the electronic orbits. The possible distortions of
the bonding orbit are two:

- symmetrical distortion
- asymmetrical distortion
The both type of distortion are shown respec-

tively  in Fig. 9.16, a. and b.

                           Fig. 9.16
  a. - symmetrical  and b. - asymmetrical dis-

tortion of the bonding orbit

The symmetrical distortions contributes to
the rotational components of the optical spectra
with not folded branches. The asymmetrical dis-
tortions contribute to the spectra containing folded
branches. All the atomic nuclear structure possess
polar twisting. In confine motion in CL space they
rotates. This rotation contributes to the pure rota-
tional spectra.

The molecular vibrations are characterized
by additional effect not existing in the atoms. The
IG forces are able to modulate the spatial configu-
ration of the proximity E-field of the protons in-
volved in the chemical bond. As a result the
vibrational quantum conditions occur at intrinsical-
ly small changes of the internuclear distance. For
H2 ortho-I molecule, for example, the vibrational
range is only 4E-16 (m) while the internuclear dis-
tance is 2.23E-10 (m). This effects in fact facili-
tates the unveiling of the possible configuration of
any the molecule, because it allows using the esti-
mated dimensions of Lq(n). From the energy point
of view Lq(n) are  are valid for the limit orbits. But
the intrinsically small change of the internu-
clear distance allows to apply them in the draw-
ing method for unveiling the internuclear
distances.

4. Examples of some molecular structures
Note: In the following drawings the protons and
neutrons in the central polar section of the atomic
nucleus are only shown. 

         Fig. 9.43  Possible configurations of   O2(D) and O2(A). 
{D} and {A} are states of O2 according BSM model. The or-
bital planes of electrons does not lie in the drawing plane, but
are shown in this way for convenience. The number in brack-
et indicates the subharmonic number of the quantum orbit.



 Fig. 9.44    Possible configuration of O2 in {B} state

Fig. [9.45] Possible configuration of O2 molecule
in {E} state

 Fig. 9.53 Two views of the possible configuration of oxy-

gen atom in Airglow state responsible for line emissions
at 5577 A and 6300 A.
.

                              Fig. 9.53.A
   Ozone molecule with second subharmonic bonding orbits
   Every one of three bonding orbits contains two electrons
   with opposite quantum mechanical spin

                          Fig. 9.54
Possible configuration of (OH)+  (the planes of 
bonding orbits are shown rotated  at 90 deg, but in  the
real physical model, they are normal to the drawing plane)

 

                             Fig. 9.56
             One view of CO2 molecule.  The oxygen atoms
             looks differently in both ends because the right-side
             one is rotated at 90 deg around  the xx axis in respect
             to the left-side one.

.

                  Fig. 9.59
                                    Water molecule



 .

Fig. 9.7 Cl2 molecule. The dashed oval is the envelope of Ne
nucleus. The set of possible quantum orbits are shown in the
square box, the number in bracket is the subharmonic number
of electron quantum velocity. The experimental value of in-
ternuclear distance between Cl atoms is 1.98 A.
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